• Title/Summary/Keyword: Nucleophilic substitution

Search Result 275, Processing Time 0.024 seconds

Synthesis of Various Polymeric Prodrugs of Ibuprofen with PEG and Its Derivative as Polymeric Carriers

  • Lee, Chan-Woo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by the nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt; PN (Pluronic) was also used in place of PEG. All the bromo-terminated PEGs and PN were obtained in high yield. Conversions of the terminal hydroxyl groups to bromo-termini were quantitative, as were the drug conjugation processes. The Ι$_1$$_3$values obtained from solutions of the ibuprofen-conjugated prodrugs are summarized in relation to those of ibuprofen in water and in aqueous solutions of the original PEG, PN, and several ordinary surfactants. We believe that the fully hydrophilic PEG is completely hydrated and forms no hydrophobic pocket by segment aggregation. These results indicate that the probe environment is significantly hydrophobic, particularly in the solution of prodrug PN, for which the ratio is similar to that obtained from typical micelles of surfactants. The results suggest, therefore, that the present synthetic method is very useful for preparing PEG-based prodrugs from pharmaceuticals having carboxyl functionalities.

Drug-Release Behavior of Polymeric Prodrugs of Ibuprofen with PEG and Its Derivatives as Polymeric Carriers

  • Lee, Chao-Woo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.71-77
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt. The conversion of the terminal hydroxyl groups to bromo-termini was quantitative, as was the drug conjugation process, which suggests that the present synthetic method is very useful for the preparation of PEG-based prodrugs from pharmaceuticals having carboxyl functionalities. The drug-release behavior of the prodrugs was examined in both phosphate buffer (PBS, pH 7.4) and rat plasma. From the drug-release behavior in PBS, we determined that each prodrug has high storage stability. The drug-release rate was observed to be much faster in rat plasma than in buffer solution as a result of the acceleration effect provided by enzymes present in the plasma. The drug-release rate in rat plasma depends on the degree of molecular aggregation of the prodrugs, which can be changed effectively by the nature of their spacer groups or by the use of Pluronic as the polymer carrier.

Synthesis and Antiviral Evaluation of Novel Methyl Branched Cyclopropyl Phosphonic Acid Nucleosides

  • Kim, Jin-Woo;Ko, Ok-Hyun;Hong, Joon-Hee
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.745-749
    • /
    • 2005
  • A simple synthetic route for the synthesis of novel methyl branched cyclopropyl phosphonic acid nucleosides is described. The characteristic cyclopropyl moiety 8 was constructed by employing Simmons-Smith reaction as a key step. The condensation of mesylate 11 with natural nucleosidic bases (A,C,T,U) under standard nucleophilic substitution conditions ($K_2CO_3$, 18-Crown-6, DMF) and after subsequent hydrolysis resulted in the formation of target nucleosides, 16, 17, 18, and 19. In addition, the antiviral evaluations of the synthesized nucleotides against various viruses were also performed.

Cross Interaction Constants As a Measure of the Transition State Structure (Part 2). Nucleophilic Substitution Reactions of Phenacyl Bromides with Aniline in Methanol-Acetonitrile Mixtures

  • Lee, Ik-Choon;Kim, In-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.133-135
    • /
    • 1988
  • Kinetics and mechanism of the nucleophilic substitution reactions of phenacyl bromides with anilines in methanol-acetonitrile mixtures at $45.0^{\circ}C$ are reported. The reaction is found to proceed via $S_N2$ process, but the magnitudes of cross interaction constants, ${\rho}_{XY}$, between substituents X in the nucleophile and Y in substrate were unusually small, even after allowing for the fall off due to non-conjugative intervening -CO group in the reactant. As in the other phenacyl derivatives, the resonance shunt phenomenon was invoked to explain the remarkable diminuation of the $|{\rho}_{XY}|$ values.

Nucleophilic Substitution Reactions of Thiopheneethyl Arenesulfonates with Anilines and N,N-Dimethylanilines

  • 오혁근;윤정환;조인호;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.390-394
    • /
    • 1997
  • Nucleophilic substitution reactions of 2-thiopheneethyl benzenesulfonates (2-TEB) and 3-thiopheneethyl benzenesulfonates (3-TEB) with anilines and N,N-dimethylanilines (DMA) are investigated in acetonitrile at 60.0 ℃. The cross-interaction constants ρxz determined for the reactions with anilines are large negative (- 0.50) which are comparable to those for the similar predominantly frontside-attack SN2 reactions of 1-phenylethyl (1-PEB), 2-phenylethyl (2-PEB) and cumyl benzenesulfonates. A large negative ρxz value (- 0.4∼- 0.8) is considered to provide a mechanistic criterion for the frontside-attack SN2 mechanism with a four-center transition state. In agreement with this proposal the kinetic isotope effects, kH/kD, involving deuterated aniline nucleophiles are all greater than one reflecting partial N-H(D) bond cleavage in the transition state. The MO theoretical reactant structures of 1-PEB, 2-PEB and 2-TEB based on the PM3 calculation show that the benzene ring blocks the backside nucleophile approach to the reaction center carbon (Cα) enforcing the frontside-attack SN2 mechanism.

Kinetic Isotope Effects in the Nucleophilic Substitution Reactions of Benzyl- and 1-Phenylethyl -benzenesulfonates with Deuterated Aniline Nucleophiles

  • Lee, Ik-Choon;Koh, Han-Joong;Lee, Bon-Su;Lee, Hai-Whang;Choi, Jae-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.435-438
    • /
    • 1990
  • Primary and secondary ${\alpha}$-deuterium kinetic isotope effects are determined with deuterated aniline nucleophiles in the nucleophilic substitution reactions of benzyl benzenesulfonates and 1-phenylethyl benzenesulfonates in acetonitrile at 30.0^{\circ}C. The $k_H/k_D$ values support our previous conclusions regarding the transition state structures proposed for the two reactions based on the cross-interaction constants ${\rho}_{ij}$; the former is a typical $S_N2$ reaction whereas in the latter the four-center transition state may be involved.

The Effect of Solvation and Polarizability on the $\alpha$-Effect: Nucleophilic Substitution Reactions of p-Nitrophenyl Benzoate with Various Anionic Nucleophiles

  • Um Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.632-636
    • /
    • 1992
  • Second-order rate constants have been determined spectrophotometrically for nucleophilic substitution reactions of p-nitrophenyl benzoate with various anionic nucleophiles including 6 ${\alpha}$ -effect nucleophiles. The logarithmic second-order rate constants for the aryloxides give a good Bronsted correlation with the respective basicity while the ones for p-chlorothiophenoxide and hydroxide exhibit significantly positive and negative deviations, respectivity, from the Bronsted linear line. The deviations are attributed to a solvation effect rather than a change in the reaction mechanism. The ${\alpha}$-effect nucleophiles except highly basic ones demonstrate significantly higher nucleophilicity (the ${\alpha}$ -effect) than would be predicted from the respective basicity. The effect of solvation and polarizability appears to be important for the ${\alpha}$-effect as well as for the reaction rate.

The Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of Aryl 2-Furoates with Alkali Metal Ethoxides in Ethanol

  • Dong-Sook Kwon;Jung-Hyun Nahm;Ik-Hwan Um
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.654-658
    • /
    • 1994
  • Rate constants have been measured spectrophotometrically for the nucleophilic substitution reactions of p-and m-nitrophenyl 2-furoates (4 and 5, respectively) with alkali metal ethoxides ($EtO^-M^+$) in absolute ethanol at 25$^{\circ}$C. The reactivity of $EtO^-M^+$ toward 4 is in the order $EtO^-K^+$ > $EtO^-Na^+$> $EtO^-Li^+$ > $EtO^-K^+$+ 18-crown-6 ether. This is further confirmed by an ion pairing treatment method. The present result indicates that (1) ion paired $EtO^-M^+$ is more reactive than dissociated $EtO^-$ ; (2) the alkali metal ions ($K^+,\;Na^+,\;Li^+$) behave as a catalyst; (3) the catalytic effect increases with increasing the size of the metal ion. A similar result has been obtained for the reaction of 5, however, the catalytic effects shown by the metal ions are more significant in the reaction of 5 than in that of 4.

Theoretical Studies on the Gas-Phase Nucleophilic Aromatic Substitution Reaction

  • Lee, Ik-Choon;Park, Hyoung-Yeon;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.658-661
    • /
    • 1991
  • The gas-phase nucleophilic substitution reaction of pentafluoroanisole with $OH^-$ and ${NH_2}^-$ nucleophiles have been studied theoretically using the AM1 method. Three reaction channels, $S_N2$, IPSO and $S_NAr$ (scheme 1), are all very exothermic so that all are accessible despite the varying central energy barriers which are much lower than the reactants level. In the IPSO and $S_NAr$ channels, the reactants form directly a stable ,${\sigma}$-anion complex which proceeds to form a proton transfer complex via a transition barrier corresponding to a loose ${\pi}$-type complex with the F-(or ${OCH_3}^-$) leaving group. Due to a greater number of probable reaction sites available for $S_NAr$ compared to the other two processes, the $S_NAr$ channel is favored as experimentally observed.

Nucleophilic Substitution Reactions of 1- and 2-Naphthylethyl Arenesulfonates with Anilines and Benzylamines

  • 오혁근;송세정;조인호;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.254-257
    • /
    • 1996
  • Nucleophilic substitution reactions of 1- and 2-naphthylethyl arenesulfonates, 2 and 3, with anilines and benzylamines in methanol at 65.0 ℃ are investigated. The rates are slower than those for the corresponding derivatives of 2-phenylethyl arenesulfonates, 1, which can be attributed to a greater degree of positive charge stabilization at Cα in the transition state (TS) by a greater electron supply from a phenyl ring compared to a naphthyl ring. The mechanism for the two naphthylethyl systems are similar to that for the 2-phenylethyl derivatives, except that the transition state is formed at somewhat an earlier position along the reaction coordinate. The secondary kinetic isotope effects involving deuterated nucleophilies indicate that naphthylethyl series are sterically more crowded in the TS than 2-phenylethyl system. The data in this work can not elucidate the possible participation of the aryl-assisted pathway in the reaction.