• 제목/요약/키워드: Nucleophilic aromatic substitution

검색결과 23건 처리시간 0.019초

PCBs 함유 변압기 절연유의 화학적처리 (Chemical Treatment of the PCBs-laden Transformer Insulation Oil)

  • 유건상;최종하;최진환
    • 한국환경과학회지
    • /
    • 제20권11호
    • /
    • pp.1499-1507
    • /
    • 2011
  • Practical disposal of transformer insulation oil laden with PCBs (polychlorinated biphenyls) by a chemical treatment has been studied in field work. The transformer insulation oil containing PCBs was treated by the required amounts of PEG (polyethylene glycol) and KOH, along with different reaction conditions such as temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. Removal efficiencies of PCBs in insulation oil before and after chemical treatment were examined. The removal efficiency of PCBs was very low at lower temperatures of 25 and $50^{\circ}C$. Under the reaction condition of PEG 600/KOH/$100^{\circ}C$/2hr, removal efficiency of PCBs was approximately 70%, showing completely removal of PCBs containing 7~9 chlorines on biphenyl frame which appear later than PCB IUPAC Number 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to $150^{\circ}C$ and 4 hours, removal efficiency of PCBs reached 99.99% without any formation of PCDDS/PCDFs during the process. Such reaction conditions were verified by several official analytical institutions. In studying the reaction of PEG with PCBs, it confirmed that the process of chemical treatment led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines.

고분자연료전지용 설폰산화 폴리아릴렌에테르설폰 멀티블록공중합체의 합성 및 특성 분석 (Synthesis and Characterization of Sulfonated Poly (Arylene ether Sulfone) Multi-Block Copolymer for PEMFC Application)

  • 안진주;최영우;양태현;김창수;배병찬
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.461-467
    • /
    • 2012
  • Multi-block sulfonated poly (arylene ether sulfone) (SPES) membranes were synthesized by post-sulfonation and its properties characterized. Two types of oligomers, F-terminated and OH-terminated telechelic oligomers, were synthesized by controlling the feed ratio of dihydroxyl- and difluoro-monomers. Their number of repeating unit (X and Y) was analyzed by GPC and $^1H$ NMR. Copolymerization with F-terminated and OH-terminated telechelic oligomers via nucleophilic aromatic substitution, gave high-molecular-weight multi-block PESs. Each block length was controlled to have different values with X5Y10, X10Y10, X20Y10 and X20Y20. Successful polymerization and its successful sulfonation was confirmed by GPC and $^1H$ NMR. RH dependence of proton conductivity of multi-block SPES membranes was comparable to that of Nafion 212 at high RH conditions.

술폰화된 비스(4-플루오로페닐) 페닐포스핀옥사이드를 포함한 연료전지용 고분자 전해질막의 합성과 특성분석 (Synthesis and characterization of polymer electrolyte membrane for fuel cell including sulfonated bis (4-fluorophenyl) phenylphosphine oxide)

  • 유은실;남기석;유동진
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.176-183
    • /
    • 2016
  • 본 연구는 연료전지용 고분자 전해질 막의 성능 향상에 관한 것으로서 연료전지를 구동하기 위해 요구되는 전해질 막의 특성에 대하여 연구하였다. Bis(4-fluorophenyl)phenyl phosphine oxide를 발연 황산을 이용하여 양이온($H^+$)을 전도할 수 있는 술폰산기를 치환시켜 주었다. 친수성 올리고머와 소수성 올리고머를 각각 합성하고, 블록 공중합체는 친수성 올리고머와 소수성 올리고머를 방향족 친핵성 치환반응에 의해 제조하였다. 블록 공중합체의 구조 및 술폰화도(DS)는 $^1H$-NMR, 겔 침투 크로마토그래피 (GPC) 분석에 의해 확인하였다. 열적 안정성은 열중량 분석(TGA)을 통해 확인하였으며, 본 연구에서 제조한 블록 코폴리머는 $200^{\circ}C$ 이상의 온도 조건에서 내열성을 나타내었다. 또한, 이온전도성은 연료전지 전해질 막으로서의 성능을 증명하기 위해 이온전도도 시험을 수행하였다. 제조한 막은 온도가 증가할수록 발달된 이온클러스터의 영향으로 최대 58 mS/cm의 이온전도성을 보였다. 블록 코폴리머의 미세 상 분리의 특성은 AFM분석을 통해 확인하였다.