• Title/Summary/Keyword: Nuclear-hydrogen

Search Result 632, Processing Time 0.032 seconds

Development and Application of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under Severe Accidents

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.110-126
    • /
    • 1997
  • A two-dimensional continuum model for the hydrogen mining phenomena in the containment subcompartment under severe accident conditions has been developed to predict the spatial distribution of the hydrogen concentration. The model can predict the distribution of time-dependent hydrogen concentration for HEDL experiments well. For the simulation of these experiments, the hydrogen is mixed uniform within the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen might be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen. Finally, in order to account for non-uniform distribution of the hydrogen due to the geometrical configuration the maximum-to-average ratio is functionalized.

  • PDF

NUMERICAL METHOD FOR EVALUATION OF HYDROGEN FLAME ACCELERATION IN A COMPARTMENT OF A NUCLEAR POWER PLANT (원자력발전소 격실에서의 수소화염 가속에 대한 수치해석 연구)

  • Kim, Jong-Tae;Kim, Sang-Baik;Kim, Hoo-Joong
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.67-75
    • /
    • 2010
  • Hydrogen safety is one of important issues for future public usage of hydrogen. When hydrogen is released in a compartment, the occurrence of detonation must be prohibited. In order to evaluate the possibility of DDT (Deflagration to Detonation Transition) in the compartment with the hydrogen release, sigma-lambda criteria which were developed from experimental data are commonly used. But they give a little conservative results because they do not consider the detailed geometrical effect of the compartment. This is the main reason of the need to mechanistic combustion model for evaluation of hydrogen flame propagation and acceleration. In this study, sigma-lambda criteria and combustion model were systematically applied to evaluate a possibility of DDT in a IRWST compartment of APR1400 nuclear power plant during a hypothetical accident. A combustion model in an open source CFD code OpenFOAM has been applied for analyses of hydrogen flame propagation. The model was validated by evaluating the flame acceleration tests conducted in FLAME facility. And it was applied to evaluate the characteristics of a hydrogen flame propagation in the IRWST compartment of APR1400.

Analyses of hydrogen risk in containment filtered venting system using MELCOR

  • Choi, Gi Hyeon;Jerng, Dong-Wook;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.177-185
    • /
    • 2022
  • Hydrogen risk in the containment filtered venting system (CFVS) vessel was analyzed, considering operation pressure and modes with the effect of PAR and accident scenarios. The CFVS is to depressurize the containment by venting the containment atmosphere through the filtering system. The CFVS could be subject to hydrogen risk due to the change of atmospheric conditions while the containment atmosphere passes through the CFVS. It was found that hydrogen risk increased as the CFVS opening pressure was set higher because more combustible gases generated by Molten Core Concrete Interaction flowed into the CFVS. Hydrogen risk was independent of operation modes and found only at the early phase of venting both for continuous and cyclic operation modes. With PAR, hydrogen risk appeared only at the 0.9 MPa opening pressure for Station Black-Out accidents. Without PAR, however, hydrogen risk appeared even with the CFVS opening set-point of 0.5 MPa. In a slow accident like SBO, hydrogen risk was more threatening than a fast accident like Large Break Loss-of-Coolant Accident. Through this study, it is recommended to set the CFVS opening pressure lower than 0.9 MPa and to operate it in the cyclic mode to keep the CFVS available as long as possible.

Characteristics of a Hydrogen Isotope Storage and Accountancy System (수소동위원소 저장 계량 장치 특성 연구)

  • KIM, YEANJIN;JUNG, KWANGJIN;GOO, DAESEO;PARK, JONGCHUL;JEON, MIN-GU;YUN, SEI-HUN;CHUNG, HONGSUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.541-546
    • /
    • 2015
  • Global energy shortage problem is expected to increase driven by strong energy demand growth from developing countries. Nuclear fusion power offers the prospect of an almost infinite source of energy for future generations. Hydrogen isotope storage and delivery system is a important subsystem of a nuclear fusion fuel cycle. Metal hydride is a method of the high-density storage of hydrogen isotope. For the safety storage of hydrogen isotope, depleted uranium (DU) has been widely proposed. But DU needs a safe test because It is a radioactive substance. The authors studied a small-scale DU bed and a medium-scale DU bed for the safety test. And then we made a large-scale DU bed and stored hydrogen isotopes in the bed. Before the hydriding/dehydriding, we tested it's heating and cooling properties and carried out an activation procedure. As a result, Reaction rate of DU-$H_2$ is more rapid than the other metal hydride ZrCo. Through the successful storage result of our large bed, the development possibility of the hydrogen isotope storage technology seems promising.

Application of CFD model for passive autocatalytic recombiners to formulate an empirical correlation for integral containment analysis

  • Vikram Shukla;Bhuvaneshwar Gera;Sunil Ganju;Salil Varma;N.K. Maheshwari;P.K. Guchhait;S. Sengupta
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4159-4169
    • /
    • 2022
  • Hydrogen mitigation using Passive Autocatalytic Recombiners (PARs) has been widely accepted methodology inside reactor containment of accident struck Nuclear Power Plants. They reduce hydrogen concentration inside reactor containment by recombining it with oxygen from containment air on catalyst surfaces at ambient temperatures. Exothermic heat of reaction drives the product steam upwards, establishing natural convection around PAR, thus invoking homogenisation inside containment. CFD models resolving individual catalyst plate channels of PAR provide good insight about temperature and hydrogen recombination. But very thin catalyst plates compared to large dimensions of the enclosures involved result in intensive calculations. Hence, empirical correlations specific to PARs being modelled are often used in integral containment studies. In this work, an experimentally validated CFD model of PAR has been employed for developing an empirical correlation for Indian PAR. For this purpose, detailed parametric study involving different gas mixture variables at PAR inlet has been performed. For each case, respective values of gas mixture variables at recombiner outlet have been tabulated. The obtained data matrix has then been processed using regression analysis to obtain a set of correlations between inlet and outlet variables. The empirical correlation thus developed, can be easily plugged into commercially available CFD software.

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

A Study on the Safety of Hydrogen Embrittlement of Materials Used for Hydrogen Electric Vehicles (수소전기차 사용소재의 수소취성 안전성에 관한 고찰)

  • HYEONJIN JEON;WONJONG JEONG;SUNGGOO CHO;HOSIK LEE;HYUNWOO LEE;SEONGWOO CHO;ILHO KANG;NAMYONG KIM;HO JIN RYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.761-768
    • /
    • 2022
  • In the hope of realizing carbon neutrality, Korea has established the goal of expanding the supply of hydrogen electric vehicles through a roadmap to revitalize the hydrogen economy. A prerequisite for successful supply expansion is securing the safety of hydrogen electric vehicles. Certain parts, such as the hydrogen transport pipe and tank, in hydrogen electric vehicles are exposed to high-pressure hydrogen gas over long periods of time, so the hydrogen enters the grain boundary of material, resulting in a degradation of the parts referred to as hydrogen embrittlement. In addition, since the safety of parts utilizing hydrogen varies depending on the type of material used and its environmental characteristics, the necessity for the enactment of a hydrogen embrittlement regulation has emerged and is still being discussed as a Global Technical Regulation (GTR). In this paper, we analyze a hydrogen compatibility material evaluation method discussed in GTR and present a direction for the development of Korean-type hydrogen compatibility material evaluation methods.