• Title/Summary/Keyword: Nuclear spent fuel

Search Result 954, Processing Time 0.024 seconds

The relationship between public acceptance of nuclear power generation and spent nuclear fuel reuse: Implications for promotion of spent nuclear fuel reuse and public engagement

  • Roh, Seungkook;Kim, Dongwook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2062-2066
    • /
    • 2022
  • Nuclear energy sources are indispensable in cost effectively achieving carbon neutral economy, where public opinion is critical to adoption as the consequences of nuclear accident can be catastrophic. In this context, discussion on spent nuclear fuel is a prerequisite to expanding nuclear energy, as it leads to the issue of radioactive waste disposal. Given the dearth of study on spent nuclear fuel public acceptance, we use text mining and big data analysis on the news article and public comments data on Naver news portal to identify the Korean public opinion on spent nuclear fuel. We identify that the Korean public is more interested in the nuclear energy policy than spent nuclear fuel itself and that the alternative energy sources affect the position towards spent nuclear fuel. We recommend relating spent nuclear fuel issue with nuclear energy policy and environmental issues of alternative energy sources to further promote spent nuclear fuel.

Analysis on Study Cases of Safety Assessment and Cases for Spent Nuclear Fuel Pool Accident (사용후핵연료 습식저장시설 사고 안전성 평가 연구 현황 및 사고 사례 분석)

  • Shin Dong Lee;Hyeok Jae Kim;Geon Woo Son;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 2023
  • Spent nuclear fuel corresponds to high-level radioactive waste that has high decay heat and radioactivity. Accordingly, Spent nuclear fuel withdrawn from the reactor core is primarily stored and managed in a spent nuclear fuel pool in the nuclear power plant to reduce decay heat and radioactivity. In Korea, most nuclear power plant store all spent nuclear fuel in a spent nuclear fuel pool. For wet storage, there are no defense in depth different with reactor core. The study related to spent nuclear fuel pool accident should be carried out to ensure safety. Therefore, it is necessary to analyze previous study cases related to safety of spent nuclear fuel pool and accident cases to build foundational knowledge. The Objective of this study is to analyze study cases of safety assessment and cases for spent nuclear fuel pool accident. For analyzing study cases of safety assessment, possible phenomena when spent nuclear fuel pool accident occurring identified, Subsequently, study cases for safety assessment about each phenomena were investigated, and materials & methods and results for each study are analyzed. For analyzing cases for spent nuclear fuel pool accident, we analyzed accident cases caused by loss of cooling and loss of coolant in spent nuclear fuel pool. Subsequently, causes and change of water level and temperature by each accident case are analyzed. As a result of the analysis on study cases of spent nuclear fuel pool accident, the results of the study conducted by each research institute were vary depending on the computer code, materials & methods of experiment and major assumptions used in the study. As a result of analyzing cases for spent nuclear fuel pool accident, it was found that accident cases for loss of cooling is more than cases for loss of coolant accident. Even though the types of accident in spent nuclear fuel pool were similar, the specific causes were different by each accident case. All the accident cases analyzed did not lead to severe accidents, such as nuclear fuel being exposed to the air. The result of this study will be used as fundamental data for study on spent nuclear fuel pool accident that will be conducted in the future.

Integral nuclear data validation using experimental spent nuclear fuel compositions

  • Gauld, Ian C.;Williams, Mark L.;Michel-Sendis, Franco;Martinez, Jesus S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1226-1233
    • /
    • 2017
  • Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors and representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. The database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.

Development of the Defect Analysis Technology for CANDU Spent Fuel

  • Kim, Yong-Chan;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.215-223
    • /
    • 2021
  • The domestic CANDU nuclear power plants have been operated for a long time and various unforeseen spent fuel defects have been discovered. As the spent fuel defects are important factors in the safety of the nuclear power plant, a study on the analysis of the spent fuel defects to prevent their recurrence is necessary. However, in cases where the fuel rods inside the fuel assembly are defected, it is difficult to dismantle the fuel assembly owing to their welded structure and the facility conditions of the plant. Therefore, it is impossible to analyze the spent fuel defect because it is difficult to visually check the shape of the fuel defect. To resolve these problems, an analysis technology that can predict the number of defected fuel rods and defect size was developed. In this study, we developed a methodology for investigating the root cause of spent fuel defects using a database of the earlier fuel defects in the plants. It is anticipated that in the future this analysis technology will be applied when spent fuel defects occur.

MANAGING SPENT NUCLEAR FUEL FROM NONPROLIFERATION, SECURITY AND ENVIRONMENTAL PERSPECTIVES

  • Choi, Jor-Shan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.231-236
    • /
    • 2010
  • The growth in global energy demand and the increased recognition of the impacts of carbon dioxide emissions from fossil fuel plants have aroused a renewed interest on nuclear energy. Many countries are looking afresh at building more nuclear power stations to deal with the twin problems of global warming and the need for more generating capacity. Many in the nuclear community are also anticipating a significant growth of new nuclear generation in the coming decades. If there is a nuclear renaissance, will the expansion of nuclear power be compatible with global non-proliferation and security? or will it add to the environmental burden from the large inventory of spent nuclear fuel already produced in existing nuclear power reactors? We learn from past peaceful nuclear activities that significant concerns associated with nuclear proliferation and spent-fuel management have resulted in a decrease in public acceptance for nuclear power in many countries. The terrorist attack in the United States (US) on September 11, 2001 also raised concern for security and worry that nuclear materials may fall into the wrong hands. As we increase the use of nuclear power, we must simultaneously reduce the proliferation, security and environmental risks in managing spent-fuel below where they are today.

Reference Spent Fuel and Its Characteristics for a Deep Geological Repository Concept Development

  • Choi, Jong-Won;Ko, Won-Il;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.23-38
    • /
    • 1999
  • This study addresses the reference spent fuel and its characteristics for developing a geological repository concept. As a disposal capacity of the reference repository system to be developed, spent fuel inventories were projected based on the basis of the Nuclear Energy Plan of the Long-term National Power Program. The reference spent fuel encompassing a variability in characteristics of all existing and future spent fuels of interest was defined. Key parameters in the reference fuel screening processes were the nuclear and mechanical design parameters and the burnup histories for existing spent fuels as of 1996 and for future spent fuels with the more extended burnup the initial enrichment and its expected turnup. The selected reference fuel was characterized in terms of initial enrichment, bumup, dimension, gross weight and age. Also the isotopic composition and the radiological properties are quantitatively identified. This information provided in this study could be used as input for repository system development and performance assessment and applied in fuel material balance evaluation for the various types of back-end fuel cycle studies.

  • PDF

Spent fuel characterization analysis using various nuclear data libraries

  • Calic, Dusan;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3260-3271
    • /
    • 2022
  • Experience shows that the solution to waste management in any national programme is lengthy and burdened with uncertainties. There are several uncertainties that contribute to the costs associated with spent fuel management. In this work, we have analysed the impact of the current nuclear data on the isotopic composition of the spent fuel and consequently their influence on the main spent fuel observables such as decay heat, activity, neutron multiplication factor, and neutron and photon source terms. Nuclear libraries based on the most general nuclear data ENDF/B-VII.0, ENDF/B-VII.1, ENDF/B-VIII.0 and JEFF-3.3 are considered. A typical NPP Krško fuel assembly is analysed using the Monte Carlo code Serpent 2. The analysis considers burnup of up to 60 GWd/tU and cooling times of up to 100 years. The comparison of results showed significant differences, which should be taken into account when selecting the library and evaluating the uncertainty in determining the characteristics of the spent fuel.

Systems Engineering Process Approach to the Probabilistic Safety Assessment for a Spent Fuel Pool of a Nuclear Power Plant (사용후핵연료저장조의 확률론적안전성평가 수행을 위한 시스템엔지니어링 프로세스 적용 연구)

  • Choi, Jin Tae;Cha, Woo Chang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.82-90
    • /
    • 2021
  • The spent fuel pool (SFP) of a nuclear power plant functions to store the spent fuel. The spent fuel pool is designed to properly remove the decay heat generated from the spent fuel. If the cooling function is lost and proper operator action is not taken, the spent fuel in the storage pool can be damaged. Probabilistic safety assessment (PSA) is a safety evaluation method that can evaluate the risk of a large and complex system. So far, the probabilistic safety assessment of nuclear power plants has been mainly performed on the reactor. This study defined the requirements and the functional architecture for the probabilistic safety assessment of the spent fuel pool (SFP-PSA) by applying the systems engineering process. And, a systematic and efficient methodology was defined according to the architecture.

An analysis of neutron sources and gamma-ray in spent fuels using SCALE-ORIGEN-ARP (SCALE-ORIGEN-ARP를 이용한 사용후핵연료 내 중성자 및 감마선원 분석)

  • So-Hee Cha;Kwang-Heon Park
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.84-93
    • /
    • 2023
  • The spent nuclear fuel is burned during the planned cycle in the plant and then generates elements such as actinide series, fission products, and plutonium with a long half-life. An 'interim storage' step is needed to manage the high radioactivity and heat emitted by nuclides until permanent-disposal. In the case of Korea, there is no space to dispose of high-level radioactive waste after use, so there is a need for a period of time using interim storage. Therefore, the intensity of neutrons and gamma-ray must be determined to ensure the integrity of spent nuclear fuel during interim storage. In particular, the most important thing in spent nuclear fuel is burnup evaluation, estimation of the source term of neutrons and gamma-ray is regarded as a reference measurement of the burnup evaluation. In this study, an analysis of spent nuclear fuel was conducted by setting up a virtual fuel burnup case based on CE16×16 fuel to check the total amount and spectrum of neutron, gamma radiation produced. The correlation between BU (burnup), IE (enrichment), and CT (cooling time) will be identified through spent nuclear fuel burnup calculation. In addition, the composition of nuclide inventory, actinide and fission products can be identified.

The information system concept for thermal monitoring of a spent nuclear fuel storage container

  • Svitlana Alyokhina
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3898-3906
    • /
    • 2023
  • The paper notes that the most common way of handling spent nuclear fuel (SNF) of power reactors is its temporary long-term dry storage. At the same time, the operation of the dry spent fuel storage facilities almost never use the modern capabilities of information systems in safety control and collecting information for the next studies under implementation of aging management programs. The author proposes a structure of an information system that can be implemented in a dry spent fuel storage facility with ventilated storage containers. To control the thermal component of spent fuel storage safety, a database structure has been developed, which contains 5 tables. An algorithm for monitoring the thermal state of spent fuel was created for the proposed information system, which is based on the comparison of measured and forecast values of the safety criterion, in which the level of heating the ventilation air temperature was chosen. Predictive values of the safety criterion are obtained on the basis of previously published studies. The proposed algorithm is an implementation of the information function of the system. The proposed information system can be used for effective thermal monitoring and collecting information for the next studies under the implementation of aging management programs for spent fuel storage equipment, permanent control of spent fuel storage safety, staff training, etc.