• Title/Summary/Keyword: Nuclear regulatory commission

Search Result 93, Processing Time 0.029 seconds

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

Study of Post-Fire Safe-Shutdown Analysis of a CANDU Main Control Room based on NEI 00-01 Methodology (NEI 방법론을 적용한 중수로 주제어실의 화재안전정지분석에 관한 연구)

  • Kim, In-Hwan;Lim, Heok-Soon;Bae, Yeon-Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.20-26
    • /
    • 2016
  • When the fire takes place in Nuclear Powr Plants(NPPs), the reactor should achieve and maintain safe shut-down conditions and minimize the radioactive material released to the environment. The U.S. Nuclear Regulatory Commission (NRC) has issued numerous generic communications related to fire protection over the past 20 years, after it issued its requirements in the Fire Protection Rule set forth in Title 10, Section 50.48 of the Code of Federal Regulations (10 CFR 50.48) and Appendix R to the 10 CFR 50. The and Nuclear Energy Institute (NEI) has developed a Methodology for Risk Informed Fire Safe-Shutdown Analysis, which is related to the Deterministic Method for Multiple Spurious Operations solutions. The aim of this study was to identify, achieve, and maintain Post-Fire Safe-Shutdown of the Main Control Room (MCR) of the CANDU reactor, even though one train of the multiple Safety Structures, Systems, and Components (SCCs) fail by the technical specification and analysis method.

OBSERVABILITY-IN-DEPTH: AN ESSENTIAL COMPLEMENT TO THE DEFENSE-IN-DEPTH SAFETY STRATEGY IN THE NUCLEAR INDUSTRY

  • Favaro, Francesca M.;Saleh, Joseph H.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.803-816
    • /
    • 2014
  • Defense-in-depth is a fundamental safety principle for the design and operation of nuclear power plants. Despite its general appeal, defense-in-depth is not without its drawbacks, which include its potential for concealing the occurrence of hazardous states in a system, and more generally rendering the latter more opaque for its operators and managers, thus resulting in safety blind spots. This in turn translates into a shrinking of the time window available for operators to identify an unfolding hazardous condition or situation and intervene to abate it. To prevent this drawback from materializing, we propose in this work a novel safety principle termed "observability-in-depth". We characterize it as the set of provisions technical, operational, and organizational designed to enable the monitoring and identification of emerging hazardous conditions and accident pathogens in real-time and over different time-scales. Observability-in-depth also requires the monitoring of conditions of all safety barriers that implement defense-in-depth; and in so doing it supports sensemaking of identified hazardous conditions, and the understanding of potential accident sequences that might follow (how they can propagate). Observability-in-depth is thus an information-centric principle, and its importance in accident prevention is in the value of the information it provides and actions or safety interventions it spurs. We examine several "event reports" from the U.S. Nuclear Regulatory Commission database, which illustrate specific instances of violation of the observability-in-depth safety principle and the consequences that followed (e.g., unmonitored releases and loss of containments). We also revisit the Three Mile Island accident in light of the proposed principle, and identify causes and consequences of the lack of observability-in-depth related to this accident sequence. We illustrate both the benefits of adopting the observability-in-depth safety principle and the adverse consequences when this principle is violated or not implemented. This work constitutes a first step in the development of the observability-in-depth safety principle, and we hope this effort invites other researchers and safety professionals to further explore and develop this principle and its implementation.

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

Damping Ratios for Seismic Design of SC Structures (SC구조의 내진설계를 위한 감쇠비)

  • Lee, Seung-Joon;Kim, Won-Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.487-496
    • /
    • 2010
  • The structural damping ratios for seismic design of nuclear power plant structures are specified in Regulatory guide 1.61 of the United States NRC for RC structures of 4%(OBE) and 7%(SSE), and for steel structures of 3%(OBE) and 4%(SSE), but not for steel-plate concrete (SC) structures that have been developed recently. The objective of this study is to investigate the damping ratios of SC structures by identifying the relative differences in the damping ratios between RC and SC structures. An experimental study was performed on four specimens, RC-S, RC-M, SC-S and SC-M, where S stands for shear-governed and M for moment-governed. The conducted method was free vibration testing by rupturing a brittle steel plate that linked the actuator and the mass center. The test results were analyzed to determine fundamental frequencies and damping ratios at various load levels. By examining the relative differences in damping ratios of four specimens, it is proposed for SC structures to use the same damping ratio of 4% as RC one at OBE, but 1% less damping ratio than RC one resulting in 6% at SSE.

A Radionuclides Suite Selection for Site Characterization and Final Status Survey in the U.S. NPPs (미국의 원전 해체관련 부지특성 및 최종상태 조사를 위한 방사성 오염 핵종 결정 방법에 대한 분석)

  • Zhao, Pengfei;Jeon, Yeo Ryeong;Kim, Yongmin;Lee, Jong Seh;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.267-277
    • /
    • 2016
  • For the decommissioning of a nuclear power plant, a site characterization and final status survey require a site-specific suite of radionuclides that could potentially still be present in the site during or after the decontamination processes. The United States Nuclear Regulatory Commission (U.S. NRC) requires a Decommissioning Technical Base Document (DTBD) along with a Site Characterization and Historical Site Assessment (HSA) from the utility for decommissioning to proceed. Both the DTBD and HSA are preliminary components of the Radiological Site Survey investigation process and should be included in the final License Termination Plan (LTP) for site release and reuse consideration from the U.S. NRC and the utility company. This study reviews the United States Nuclear Power Plants (U.S. NPPs) decommissioning cases and is especially focused on the methodologies used for determining a site-specific suite of radionuclides before and during the site characterization and final status surveys. In 2017, Kori-1 will be ready for decommissioning and related preparations are ongoing, this review will help Korea to prepare regulatory guidelines and give technical background for the safe and successful decommissioning of NPPs.

A Feasibility Study on the Polymer Solidification of Evaporator Concentrated Wastes (폐액증발기 농축폐액 폴리머고화 타당성 연구)

  • Yang, Ho-Yeon;Kim, Ju-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.297-308
    • /
    • 2007
  • The granulation equipment of concentrated wastes is manufactured for the polymer solidification of concentrated wastes. It uses liquid sodium silicate as a granulating agent for the granulating of dried powder containing boric acid. The granulating agent is sprayed in the form of droplet and mean size of dried granules is $2{\sim}4mm$. The new technology which has been used for the polymer solidification of spent resin in U.S. and certified by Nuclear Regulatory Commission (NRC) is successfully applied to concentrated wastes. This uses in-situ solidification process within drum without mechanical mixing. Maximum loading of waste can be achieved without increasing of waste volume. Polymer waste forms were evaluated with several test such as fire test, compressive strength test, leaching test, immersion test, irradiation test, and thermal cycling test according to standard test procedures.

  • PDF

CFD Analysis for Steam Jet Impingement Evaluation (증기제트 충돌하중 평가를 위한 CFD 해석)

  • Choi, Choengryul;Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Kim, Seung Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Since, in case of high energy piping, steam jets ejected from the rupture zone may cause damage to nearby structure, it is necessary to design it into consideration of nuclear power plant design. For the existing nuclear power plants, the ANSI / ANS 58.2 technical standard for high-energy pipe rupture was used. However, the US Nuclear Regulatory Commission (USNRC) and academia recently have pointed out the non-conservativeness of existing high energy pipe fracture evaluation methods. Therefore, it is necessary to develop a highly reliable evaluation methodology to evaluate the behavior of steam jet ejected during high energy pipe rupture and the effect of steam jet on peripheral devices and structures. In this study, we develop a method for analyzing the impact load of a jet by high energy pipe rupture, and plan to carry out an experiment to verify the evaluation methodology. In this paper, the basic data required for the design of the jet impact load experiment equipment under construction, 1) the load change according to the jet distance, 2) the load change according to the jet collision angle, 3) the load variation according to structure diameter, and 4) the load variation depending on the jet impact position, are numerically obtained using the developed steam jet analysis technique.

Verification of the adequacy of domestic low-level radioactive waste grouping analysis using statistical methods

  • Lee, Dong-Ju;Woo, Hyunjong;Hong, Dae-Seok;Kim, Gi Yong;Oh, Sang-Hee;Seong, Wonjun;Im, Junhyuck;Yang, Jae Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2418-2426
    • /
    • 2022
  • The grouping analysis is a method guided by the Korea Radioactive Waste Agency for efficient analysis of radioactive waste for disposal. In this study, experiments to verify the adequacy of grouping analysis were conducted with radioactive soil, concrete, and dry active waste in similar environments. First, analysis results of the major radionuclide concentrations in individual waste samples were reviewed to evaluate whether wastes from similar environments correspond to a single waste stream. As a result, the soil and concrete waste were identified as a single waste stream because the distribution range of radionuclide concentrations was "within a factor of 10", the range that meet the criterion of the U.S. Nuclear Regulatory Commission for a single waste stream. On the other hand, the dry active waste was judged to correspond to distinct waste streams. Second, after analyzing the composite samples prepared by grouping the individual samples, the population means of the values of "composite sample analysis results/individual sample analysis results" were estimated at a 95% confidence level. The results showed that all evaluation values for soil and concrete waste were within the set reference values (0.1-10) when five-package and ten-package grouping analyses were conducted, verifying the adequacy of the grouping analysis.

Importance Analysis of Radiological Exposure by Ground Deposition in Potential Accident Consequences for the Licensing Approval of a Nuclear Power Plant (원전 인허가승인을 위한 사고결말평가에서 지표침적에 의한 피폭의 민감도 분석)

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • In potential accident consequence assessments for the licensing approval of LWRs, the ground deposition of radionuclides released into the environment is not allowed into the models, as recommended in the U. S. Nuclear Regulatory Commission's regulatory guide. Meanwhile, it is allowed into the assessment models for the licensing approval of PHWRs with consideration of more detailed physical processes of radionuclides in the atmosphere. Under these backgrounds, importance of exposure dose by ground deposition was quantitatively evaluated and comprehensively discussed. For potential accidental releases of $^{137}Cs$ and $^{131}I$, total exposure doses were more conservative in case of without consideration of ground deposition than in case of with its consideration. It was because of that the depletion of air concentration resulting from ground deposition is more influential in the contribution to total exposure doses than additional doses from contaminated ground. The exposure doses by the inhalation of contaminated air showed the contribution of more than 90% in total exposure doses, depending on atmospheric stability, release period of radionuclides and distance from a release point. The exposure doses from contaminated ground showed less than 10% at most in contribution of total exposure doses. The ratios of total exposure doses in case of with consideration of deposition to without its consideration for $^{131}I$ were distinct than those for $^{137}Cs$. As the atmosphere is more stable, release duration of radionuclides is longer, distance from a release point is longer, it was more distinct.