• Title/Summary/Keyword: Nuclear reactors

Search Result 863, Processing Time 0.019 seconds

A Study on the Dose Constraints for Occupational Exposure: Focusing on Expert Opinions by Field of Ridiation Industry (직무피폭의 선량제약치에 관한 연구: 분야별 전문가 의견 중심으로)

  • Il Park;Chan Hee Park;Kyu Hwan Jung;Chan Ho Park;Yong Geon Kim;Tae Jin Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2023
  • A Study on the Introduction of Dose Constraints for Occupational Exposures: Focusing on Experts' Opinions by Field of Radiation Industry. The International Commission on Radiological Protection suggests Justification, Optimization, and Dose Limits as the three principles of radiological protection, among which, as a means of protection optimization, ICRP 103 recommends to set dose constraints. In this study, opinions are collected from experts in each category of radiation industries for stakeholder participation to qualify dose constraints. A guidance and questionnaire for analyzing the dose constraints have been developed for their collection, and opinions were collected from radiation protection experts in selected categories. 20 out of 22 experts, consisted with 91%, have assessed the dose constraints setting is necessary, and 2 experts, consisted with 9%, assessed it is unnecessary. The average of dose constraint presented by experts for RI production institutions is to be the highest level of 15.3 mSv, and light-water reactors (14.6 mSv), non-destructive inspection (14.4 mSv), heavy-water reactor and medical institutes (13.9mSv) is to be above the overall average dose constraint. In case of public institutions, the average dose constraint is to be 8.6mSv, and research institutions (8.8mSv), educational institutions (9.6 mSv), waste disposal sites (9.7 mSv), and general industries (10.6 mSv) are resulted to below the overall average dose constraint. As for the means of setting dose constraints, 8 experts out of 22 suggested setting dose constraints for each specific industry or task. And, 5 experts especially suggest setting dose constraints for the specific groups with relatively high exposure, such as workers with above the record levels. As a countermeasure for workers who exceed the dose constraints, 15 experts out of 22 expressed that the cause analyses for them and preparation for a plan of reducing them are necessary.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Melting Characteristics for Radioactive Aluminum Wastes in Electric Arc Furnace (아크 용융로에서 방사성 알루미늄 폐기물의 용융특성)

  • Min, Byung-Youn;Song, Pyung-Seob;Ahn, Jun-Hyung;Choi, Wang-Kyu;Jung, Chong-Hun;Oh, Won-Zin;Kang, Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • The characteristics of the aluminum waste melting and the distribution of the radioactive nuclides have been investigated for the estimation on the volume reduction and the decontamination of the aluminum wastes from the decommissioning of the TRIGA MARK it and III research reactors at the Korea Atomic Energy Research Institute(KAERI). The aluminum wastes were melted with the use of the fluxes such as flux $A:NaCl-KCl-Na_3AlF_6$, flux B:NaCl-NaF-KF, flux $C:CaF_2$, and flux $D:LiF-KCl-BaCl_2$ in the DC graphite arc furnace. For the assessment of the distribution of the radioactive nuclides during the melting of the aluminum, the aluminum materials were contaminated by the surrogate nuclides such as cobalt(Co), cesium(Cs) and strontium(Sr). The fluidity of aluminum melt was increased with the addition of the fluxes, which has slight difference according to the type of fluxes. The formation of the slag during the aluminum melting added the flux type C and D was larger than that with the flux A and B. The rate of the slag formation linearly increased with increasing the flux concentration. The results of the XRD analysis showed that the surrogate nuclide was transferred to the slag, which can be easily separated from the melt and then they combined with aluminum oxide to form a more stable compound. The distribution ratio of cobalt in ingot to that in slag was more than 40% at all types of fluxes. Since vapor pressures of cesium and strontium were higher than those that of the host metals at the melting temperature, their removal efficiency from the ingot phase to the slag and the dust phase was by up to 98%.

  • PDF