• Title/Summary/Keyword: Nuclear reactors

Search Result 856, Processing Time 0.029 seconds

Online training and education from the VR-1 reactor-Lessons learned

  • Ondrej Novak;Tomas Bily;Ondrej Huml;Lubomir Sklenka;Filip Fejt;Jan Rataj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4465-4471
    • /
    • 2023
  • Hands-on education and training is a key part of fixing and developing technology knowledge and is an inherent part of many engineering and scientific curricula. However, access to large complex training facilities, such as nuclear reactor, could be limited by various factors, such as unavailability of those facilities in the region, high traveling costs or harmonization of the schedules of hands-on E&T with theoretical lectures and with the operational schedule of the facility. To handle the issue, several success stories have been reached with the introduction of the Internet Reactor Labs (IRL). The Internet Reactor Labs can strongly contribute to accessibility of training at research reactors and can contribute to improvements in their utilization. The paper describes the development of the Internet Reactor Lab at the VR-1 reactor of the Czech Technical University in Prague. Contrary to single-purpose IRLs, it presents various modalities of online teaching and training in experimental reactor physics and reactor operation in general as well as outreach activities that have been developed in recent years.

OECD/NEA STUDY ON THE ECONOMICS AND MARKET OF SMALL REACTORS

  • Lokhov, Alexey;Cameron, Ron;Sozoniuk, Vladislav
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.701-706
    • /
    • 2013
  • According to the OECD/NEA estimates, nuclear power plants (NPPs), whether with a large reactor or with small modular reactors (SMRs), are competitive with many other electricity generation technologies in a significant number of cases, one of the exceptions being natural gas in the USA with the current level of prices. However, SMRs have particular features and requirements setting conditions for their deployment. This paper presents the preliminary analysis by OECD/NEA of the economics, opportunities, and market for small nuclear reactors.

An extensive characterization of xenon isotopic activity ratios from nuclear explosion and nuclear reactors in neighboring countries of South Korea

  • Ser Gi Hong;Geon Hee Park;Sang Woo Kim;Yu Yeon Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.601-610
    • /
    • 2024
  • This paper gives an extensive analysis on the characterization of xenon isotopic ratios for various nuclear reactors and nuclear explosions through neutronic depletion codes. The results of the characterization can be used for discriminating the sources of the xenon isotopes' release among the nuclear explosions and nuclear reactors. The considered sources of the xenon radionuclides do not only include PWR, CANDU, and nuclear explosions using uranium and plutonium bombs, but also IRT-200 and 5MWe Yongbyon (MAGNOX reactor) research reactors operated in North Korea. A new data base (DB) on xenon isotopic activity ratios was produced using the results of the characterization, which can be used in discrimination of the sources of xenon isotopes. The results of the study show that 5MWe Yongbyon reactor has quite different characteristics in 135Xe/133Xe ratio from the PWRs and the nuclear reactors have different characteristics in 135Xe/133Xe ratios from the nuclear explosions.

Development of RETRAN-03/MOV Code for Thermal-Hydraulic Analysis of Nuclear Reactor Under Mowing Conditions

  • Kim, Jae-Hak;Park, Good-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.542-550
    • /
    • 1996
  • Nuclear ship reactors have several features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been peformed under rolling, heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removal to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions.

  • PDF

Geometry Optimization of Dispersed U-Mo Fuel for Light Water Reactors

  • Ondrej Novak;Pavel Suk;Dusan Kobylka;Martin Sevecek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3464-3471
    • /
    • 2023
  • The Uranium/Molybdenum metallic fuel has been proposed as promising advanced fuel concept especially in the dispersed fuel geometry. The fuel is manufactured in the form of small fuel droplets (particles) placed in a fuel pin covered by a matrix. In addition to fuel particles, the pin contains voids necessary to compensate material swelling and release of fission gases from the fuel particles. When investigating this advanced fuel design, two important questions were raised. Can the dispersed fuel performance be analyzed using homogenization without significant inaccuracy and what size of fuel drops should be used for the fuel design to achieve optimal utilization? To answer, 2D burnup calculations of fuel assemblies with different fuel particle sizes were performed. The analysis was supported by an additional 3D fuel pin calculation with the dispersed fuel particle size variations. The results show a significant difference in the multiplication factor between the homogenized calculation and the detailed calculation with precise fuel particle geometry. The recommended fuel particle size depends on the final burnup to be achieved. As shown in the results, for lower burnup levels, larger fuel drops offer better multiplication factor. However, when higher burnup levels are required, then smaller fuel drops perform better.

Safety Classification of Systems, Structures, and Components for Pool-Type Research Reactors

  • Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1015-1021
    • /
    • 2016
  • Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

Assessment of supervision monitoring for radiation environment around the typical research reactors in China

  • Li, Sa;Wang, Haipeng;Zhang, Yanxia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4150-4157
    • /
    • 2021
  • The supervision mode, monitoring basis and monitoring scheme of radiation environment monitoring concerning typical research reactors in China were investigated in this study. Summary and analysis were concluded of the present situation of supervised monitoring of radiation environment, such as monitoring objects, points, frequency and so on, based on the relevant data of monitoring points of four typical research reactors in China. Some experiences and existing problems were analyzed concerning the supervised monitoring of China's research reactors. Tips on topics related to strengthen the monitoring of radiation environment around the research reactors has noted.

Effects of the move towards Gen IV reactors in capacity expansion planning by total generation cost and environmental impact optimization

  • Bamshad, Ali;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1369-1377
    • /
    • 2021
  • Nowadays, it is necessary to accelerate the construction of new power plant in face of rising energy demand in such a way that the electricity will be generated at the lowest cost while reducing emissions caused by that generation. The expansion planning is one of the most important issues in electricity management. Nuclear energy comes forward with the low-carbon technology and increasing competitiveness to expand the share of generated energy by introducing Gen IV reactors. In this paper, the generation expansion planning of these new Gen reactors is investigated using the WASP software. Iran power grid is selected as a case of study. We present a comparison of the twenty-one year perspective on the future with the development of (1) traditional thermal power plants and Gen II reactors, (2) Gen III + reactors with traditional thermal power plants, (3) Gen IV reactors and traditional thermal power plants, (4) Gen III + reactors and the new generation of the thermal power plant, (5) the new generation of thermal power plants and the Gen IV reactors. The results show that the Gen IV reactors have the most developing among other types of power plants leading to reduce the operating costs and emissions. The obtained results show that the use of new Gen of combined cycle power plant and Gen IV reactors make the emissions and cost to be reduced to 16% and 72% of Gen II NPPs and traditional thermal power plants, respectively.