• 제목/요약/키워드: Nuclear power plant decommissioning

검색결과 114건 처리시간 0.022초

Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1

  • Woo Yong Kim;Hyun Woo Song;Jisoo Yoon;Moon Oh Kim
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.255-269
    • /
    • 2023
  • Compared to operational wastes, nuclear power plant (NPP) decommissioning wastes are generated in larger quantities within a short time and include diverse types with a wider range of radiation characteristics. Currently used 200 L drums and IP-2 type transport containers are inefficient and restrictive in packaging and transporting decommissioning wastes. Therefore, new packaging and transport containers with greater size, loading weight, and shielding performance have been developed. When transporting radioactive materials, radiological safety should be assessed by reflecting parameters such as the type and quantity of the package, transport route, and transport environment. Thus far, safety evaluations of radioactive waste transport have mainly targeted operational wastes, that have less radioactivity and a smaller amount per transport than decommissioning wastes. Therefore, in this study, the possible radiation effects during the transport from NPP to disposal facilities were evaluated to reflect the characteristics of the newly developed containers and decommissioning wastes. According to the evaluation results, the exposure dose to transport workers, handling workers, and the public was lower than the domestic regulatory limit. In addition, all exposure dose results were confirmed, through sensitivity analysis, to satisfy the evaluation criteria even under circumstances when radioactive materials were released 100% from the container.

A Suggestion of Contingency Guidelines According to ISDC Based on Overseas Contingency Data

  • Minhee Kim;Chang-Lak Kim;Sanghwa Shin
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.541-550
    • /
    • 2022
  • When decommissioning nuclear power plant (NPP), the first task performed is cost estimation. This is an important task in terms of securing adequate decommissioning funds and managing the schedule. Therefore, many countries and institutions are conducting continuous research and also developing and using many programs for cost estimation. However, the cost estimated for decommissioning an NPP typically differs from the actual cost incurred in its decommissioning. This is caused by insufficient experience in decommissioning NPPs or lack of decommissioning cost data. This uncertainty in cost estimation can be in general compensated for by applying a contingency. However, reflecting an appropriate standard for the contingency is also difficult. Therefore, in this study, data analysis was conducted based on the contingency guideline suggested by each institution and the actual cost of decommissioning the NPP. Subsequently, TLG Service, Inc.'s process, which recently suggested specific decommissioning costs, was matched with ISDC (International Structure for Decommissioning Costing)'s work breakdown structure (WBS). Based on the matching result, the guideline for applying the contingency for ISDC's WBS Level 1 were presented. This study will be helpful in cost estimation by applying appropriate contingency guidelines in countries or institutions that have no experience in decommissioning NPPs.

원전 제염기술 및 해외경험 분석을 통한 1차 계통 제염 적용 연구 (A Study on the Applicability for Primary System Decontamination through Analysis on NPP Decommission Technology and International Experience)

  • 송종순;정민영;이상헌
    • 방사성폐기물학회지
    • /
    • 제14권1호
    • /
    • pp.45-55
    • /
    • 2016
  • Decontamination is one of the most important technologies for the decommissioning of NPP. The purpose of decontamination is to reduce the Risk of exposure of the decommissioning workers, and to recycle parts of the plant components. Currently, there is a lack of data on the efficiency of the decontamination technologies for decommissioning. In most cases, the local radiation level can be lowered below a regulatory limitation by decontamination. Therefore, more efficient decontamination technology must be continuously developed. This work describes the practical experiences in the United States and the European countries for NPP decommissioning using these decontamination technologies. When the decommissioning of domestic nuclear power plant is planned and implemented, this work will be helpful as a reference of previous cases.

해체부지의 잔류방사능 조사 절차 수립에 관한 연구 (Study on the Establishment of Residual Radioactivity Investigation Procedure in Decommissioning Site)

  • 김학수;임용규;박경록;손중권;강기두;김경덕;정찬우
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.24-31
    • /
    • 2004
  • 원자력발전소를 안전하게 해체하기 위해서는, 해체부지 개방기준의 준수여부를 확인하기 위해 수행되는 환경이나 설비의 방사선학적 조사의 계획, 실시 그리고 평가에 대한 상세 지침을 제공하는 절차가 필요하다. 본 연구에서는 해외 원전 해체 사례와 MARSSIM을 근간으로 부지운영이력평가, 오염범위조사, 오염현황 상세 조사, 제염복구 지원조사, 최종부지조사의 순으로 해체 부지내 잔류방사능을 조사하는 절차를 제시하였다.

  • PDF

Preliminary assessment of derived concentration guideline level (DCGL) for a hypothetical contaminated site planned for Ninh Thuan 1 nuclear power plant project in Vietnam by using RESRAD-ONSITE code

  • Bui Thi Hoa;Yongheum Jo;Jun-Yeop Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2274-2281
    • /
    • 2024
  • RESRAD-ONSITE v7.2 code is used to assess the radiation effects on a farmer resident located in a hypothetical contaminated site planned for the first nuclear power plant project in Vietnam, namely Ninh Thuan 1, after decommissioning. Derived concentration guideline levels are preliminarily calculated for 17 radionuclides that are assumed to remain on a contaminated surface soil with an initial concentration of 1 pCi/g in the protected area of NPP site. For a reliable estimation, the site-specific conditions regarding the geological, hydrological, climate, and occupancy data gathered from the Feasibility Study Report (FSR) and relevant literatures for the Ninh Thuan 1 NPP site is employed as input parameters. The calculation results indicate that the peak of total exposure dose is estimated to be ca. 0.191 mSv/yr at the time of decommissioning, and then decrease over time. Furthermore, the protected site is assessed to be released at ca. 6.71 years after decommissioning under the regulation on radiation protection in Vietnam. Through this study, a radiation exposure model for residents living near the Ninh Thuan 1 NPP is preliminarily established by using the RESRAD-ONSITE code, which are expected to be useful for future implementation of the Ninh Thuan 1 NPP project in Vietnam.

원자력발전소 해체 위험도 평가 방법론 개발 (Suggestion of Risk Assessment Methodology for Decommissioning of Nuclear Power Plant)

  • 박병익;김주열;김창락
    • 방사성폐기물학회지
    • /
    • 제17권1호
    • /
    • pp.95-106
    • /
    • 2019
  • 원전 해체를 준비함에 있어 정성적 또는 정량적 위험도 평가는 필수요소이다. 해체 공정간 발생하는 방사선학적 및 비방사선학적 위험요소는 해체 작업자 및 대중의 안전을 보장하기 위해 사전에 평가되어야 한다. 현재 해체 경험이 많은 미국의 기존 사업자들 및 NRC의 경우 위험의 중대성만 평가하는 결정론적 위험도 평가에 집중하고 있다. 하지만 최근 IAEA는 위험도 매트릭스를 활용한 위험도평가를 결정론적 위험도 평가의 대체안으로 제안하고 있다. 따라서 본 연구에서는 위험도평가에 앞서 해체 공정 별 해체 활동을 Risk Breakdown Structure에 맞추어 정리하였고, 미국 20여개 해체 원전에서 해체 공정별 위험도 평가 시행 중 선정한 해체 활동간 잠재적 사고를 해체 활동에 맞게 체계적으로 정리하였다. 그리고 복합 리스크 매트릭스를 개발 및 활용하여 해체 공정간 방사선학적 및 비방사선학적 위험요소의 위험도를 평가하여 정량적으로 수치화 하였다.

Repurposing a Spent Nuclear Fuel Cask for Disposal of Solid Intermediate Level Radioactive Waste From Decommissioning of a Nuclear Power Plant in Korea

  • Mah, Wonjune;Kim, Chang-Lak
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.365-369
    • /
    • 2022
  • Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate-level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.

회귀 분석 모델을 이용한 고리 1호기 해체 비용 추정 (Decommissioning Cost Estimation of Kori Unit 1 Using a Multi-Regression Analysis Model)

  • 주한영;김재욱;정소윤;문주현
    • 방사성폐기물학회지
    • /
    • 제18권2_spc호
    • /
    • pp.247-260
    • /
    • 2020
  • 본 논문에서는 고리 1호기 해체 비용 추정을 위해 외국 원자력발전소 해체 비용 데이터를 현가화한 후 원자력발전소 해체 비용 추정 회귀 분석모델을 개발하였다. 이 모델 개발에 사용된 데이터는 해체 또는 진행 중인 BWR 13기, PWR 16기의 해체 비용 데이터이다. 회귀 분석모델 도출을 위해, 해체 비용을 종속변수로 정하고, 해체 원전의 운전 특성을 반영할 수 있게 고안된 Contamination factor와 해체 기간을 독립변수로 선정하였다. 빅데이터 분석 도구인 R language의 통계패키지를 이용하여 회귀 분석모델을 도출하였다. 이 회귀 분석 모델을 적용하여 고리 1호기 해체 비용을 예측한 결과, 미화 663.40~928.32백만 달러, 한화 약 7,828.12억~1조 954.18억 원이 소요될 것으로 예측되었다.

원자력발전소 해체 방사성폐기물 특성보고서 작성 방안 제안 (A preparation plan proposal of nuclear power plant decommissioning radioactive waste characterization report)

  • 김창락;이선기;김헌;박해수;성석현;공창식
    • 시스템엔지니어링학술지
    • /
    • 제17권1호
    • /
    • pp.76-84
    • /
    • 2021
  • Radioactive waste generated from nuclear power plant decommissioning shall be strictly managed so that radioactive materials above the allowable limit are not leaked into the environment. Radioactive wastes shall be classified and treated for management based on characteristics such as the type of waste, physicochemical properties, nuclide concentration and radioactivity. Waste characterization report shall be prepared and submitted to the disposal facility operator to ensure that the treated waste is suitable for disposal. The disposal facility operator shall review the waste Characterization report and visit the nuclear power plant decommissioning site to ensure that the wastes are processed step by step according to the plan. The waste Characterization report may be used as input data to evaluate disposal facility safety. Domestic and foreign data are collected and reviewed to confirm the entire processes from waste generation to delivery. This paper proposes the method to prepare the waste Characterization report which contains data and information on waste characteristics, treatment facilities & method and packaging method & container.

Development of an information reference system using reconstruction models of nuclear power plants

  • Harazono, Yuki;Kimura, Taro;Ishii, Hirotake;Shimoda, Hiroshi;Kouda, Yuya
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.606-612
    • /
    • 2018
  • Many nuclear power plants in Japan are approaching the end of their planned operational life spans. They must be decommissioned safely in the near future. Using augmented reality (AR), workers can intuitively understand information related to decommissioning work. Three-dimensional (work-site) reconstruction models of dismantling fields are useful for workers to observe the conditions of dismantling field situations without visiting the actual fields. This study, based on AR and work-site reconstruction models, developed and evaluated an information reference system. The evaluation consists of questionnaires and interview surveys administered to six nuclear power plant workers who used this system, along with a scenario. Results highlight the possibility of reducing time and mitigating mistakes in dismantling fields. Results also show the ease of referring to information in dismantling fields. Nevertheless, it is apparently difficult for workers to build reconstruction models of dismantling fields independently.