• Title/Summary/Keyword: Nuclear materials

Search Result 3,293, Processing Time 0.024 seconds

The Analysis of Radiation Exposure of Hospital Radiation Workers (병원 방사선 작업 종사자의 방사선 피폭 분석 현황)

  • Jeong Tae Sik;Shin Byung Chul;Moon Chang Woo;Cho Yeong Duk;Lee Yong Hwan;Yum Ha Yong
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 2000
  • Purpose : This investigation was peformed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. Methods and Materials : The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyzed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. Results : The average of yearly radiation exposure of 347 persons was 1.52$\pm$1.35 mSv. Though it was less than 50mSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87$\pm$1.01 mSv/year, mean 1.22$\pm$0.69 mSv between 31 and 40 year old and mean 0.97$\pm$0.43 mSv/year over 41year old (p<0.001). Men received mean 1.67$\pm$1.54 mSv/year were higher than women who received mean 1.13$\pm$0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear modicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.59$\pm$1.81 msv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (p<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74$\pm$1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17$\pm$0.35 mSv/year and upper gastrointestinal room of mean 1.74$\pm$1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75$\pm$1.17 mSv/year and mean 1.50$\pm$1.39 mSv/year than other people who work in radiation area in hospital (p<0.05). Especially young doctors and technologists have the high opportunity to receive higher radiation exposure. Conclusions : The training and education of radiation workers for radiation exposure risks are important and it is necessary to rotate worker in short period in high risk area. The hospital management has to concern health of radiation workers more and to put an effort to reduce radiation exposure as low as possible in radiation areas in hospital.

  • PDF

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF

Studies of the Effects of Acupuncture Stimulation at Huatuo Jiaji(EX B2) Points on Axonal Regeneration of Injured Sciatic Nerve in the Rats (화타협척혈 침자극에 의한 손상 말초신경의 재생효과에 관한 연구)

  • Kim, Dae-Feel;Park, Young-Hoi;Keum, Dong-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.39-61
    • /
    • 2008
  • Objectives : The present study was performed to investigate whether acupuncture stimulation in the rats affected regeneration properties of the injured sciatic nerve. A differential effect of acupuncture stimulation on the one point near the spinal nerve root controlling sciatic nerve activity and the other point in the peripheral area subordinated by injured nerve was compared. Materials and Methods: Rat sciatic nerves were injured by crush, and the effects on axonal regeneration on injured sciatic nerves were evaluated by acupuncture stimulation at two different regions. In proximal acupuncture stimulation group, acupuncture stimulation was performed on Huatuo Jiaji(EX B2) points located from L5 to S1 vertebral levels to stimulate the nearest spinal nerve root that innervates sciatic nerves. In distal acupuncture stimulation group, acupuncture stimulation was performed on Zusanli(ST 36) and Weizhong(BL 40) points to stimulate at peripheral area dominated by injured sciatic nerves. Acupuncture stimulation was given every other days for 1 or 2 weeks. Sciatic nerve tissues collected from acupuncture stimulation experimental groups, injury control group, and intact animal group were used for protein analysis by Western blotting or Hoechst nuclear staining. To determine axonal regeneration, Dil fluorescence dye was injected into the sciatic nerve 0.5 cm distal to the injury site in individual animal groups and Dil-labeled cells by retrograde tracing were measured in the DRG at lumbar 5 or in the spinal cord. DRG sensory neurons prepared from individual animal groups were used to measure the extent of neurite outgrowth and for immunofluorescence staining with anti-GAP-43 antibody. Results : Animal groups given proximal or distal acupuncture stimulation showed upregulation of GAP-43 and Cdc2 protein levels in the sciatic nerve at 7 days after injury. Cdk2 protein levels were strongly induced by nerve injury, but did not show changes by acupuncture stimulation. Phospho-Erk1/2 protein levels were elevated by acupuncture stimulation above those present in the injury control animals. These increase in regeneration-associated protein levels appeared to be related with increase cell proliferation in the injured sciatic nerves. Hoechst 33258 staining of sciatic nerve tissue to visualize nuclei of individual cells showed increased Schwann cell number in the distal portion of the injured nerve 7 and 14 days after injury and further increases by acupuncture stimulation particularly at the proximal position. Measurement of axonal regeneration by retrograde tracing showed significantly increased Dil-labeled cells in proximal acupuncture stimulation group compared to distal acupuncture stimulation group and injury control group. Finally, an evaluation of axonal regeneration by retrograde tracing showed increased number of Dil labeled cells in the DRG at lumbar 5 or in the ventral horn of the spinal cord at lower thoracic level at 7 days after nerve injury. Conclusions : The present data show that the proximal acupuncture stimulation at Huatuo Jiaji(EX B2) points governing injured sciatic nerves was more effective for axonal regeneration than the distal acupuncture stimulation. Further studies on functional recovery or associated molecular mechanisms should be critical for developing animal models and clinical applications.