• Title/Summary/Keyword: Nuclear hydrogen

Search Result 629, Processing Time 0.036 seconds

Suggestion of nuclear hydrogen supply by analyzing status of domestic hydrogen demand (국내 수소 수요현황 파악을 통한 원자력 수소의 공급 용량 예측 안)

  • Lim, Mee-Sook;Bang, Jin-Hwan;Oh, Jeon-Keun;Yoon, Young-Seek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 2006
  • Hydrogen is used as a chemical feedstock in several important industrial processes, including oil refineries and petro-chemical production. But, nowadays hydrogen is focused as energy carrier on the rising of problems such as exhaustion of fossil fuel and environmental pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases, and research of nuclear hydrogen, therefore, has been worked with goal to demonstrate commercial production in 2020. The oil refineries and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and high-potential early market for hydrogen produced by nuclear energy. Therefore, it is essential to investigate and analyze for state of domestic hydrogen market focused on industrial users. Hydrogen market of petro-chemical industry as demand site was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics and then it can be provided basis for determination of optimal capacity of nuclear hydrogen plant in 2020.

Preliminary Cost Estimates for Nuclear Hydrogen System Based on High Temperature Electrolysis (고온전기분해 이용 원자력수소 예비타당성 연구)

  • Yang, Kyeongjin;Lee, Taehoon;Lee, Kiyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.228.2-228.2
    • /
    • 2010
  • In this work, the hydrogen production costs of the nuclear energy sources are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTE process with Very High Temperature nuclear Reactor (VHTR) as a thermal energy source rather than the LUEC (Levelized Unit Electricity Cost). The general ground rules and assumptions follow G4-ECONS. Through a preliminary study of cost estimates, we wished to evaluate the economic potential for hydrogen produced from nuclear energy, and, in addition, to promptly estimate the hydrogen production costs for an updated input data for capital costs. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.

  • PDF

Nuclear Hydrogen Production Technology Development Using Very High Temperature Reactor (초고온가스로를 이용한 원자력수소생산 기술개발)

  • Kim, Yong-Wan;Kim, Eung-Seon;Lee, Ki-yooung;Kim, Min-hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.299-305
    • /
    • 2015
  • Nuclear hydrogen production technology is being developed for the future energy supply system. The sulfur-iodine thermo-chemical hydrogen production process directly splits water by using of the heat generated from very high temperature gas-cooled reactor, a typical Generation IV nuclear system. Nuclear hydrogen key technologies are composed of VHTR simulation technology at elevated temperature, computational tools, TRISO fuel, and sulfur iodine hydrogen production technology. Key technology for nuclear hydrogen production system were developed and demonstrated in a laboratory scale test facility. Technical challenges for the commercial hydrogen production system were discussed.

Preliminary cost estimation for large-scale nuclear hydrogen production based on SI process (초고온가스원자로 열원 SI 공정을 이용한 원자력수소생산시스템 비용 예비 분석)

  • Yang, Kyoung-Jin;Choi, Jae-Hyuk;Lee, Ki-Young;Lee, Tae-Hoon;Lee, Kyoung-Woo;Kim, Mann-Eung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.723-726
    • /
    • 2009
  • As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GT-MHR are estimated in the necessary input data on a Korean specific basis. G4-ECONS developed by EMWG of GIF in 2008 was appropriately modified to calculate the cost for hydrogen production of SI process with VHTR as a thermal energy source rather than the LUEC. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.

  • PDF

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES ON FISSION PRODUCTS AND HYDROGEN RISK AFTER THE ACCIDENT AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION

  • NISHIMURA, TAKESHI;HOSHI, HARUTAKA;HOTTA, AKITOSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

Analysis of Hydrogen Production Cost by Production Method for Comparing with Economics of Nuclear Hydrogen (원자력 수소 경제성 비교를 위한 수소 생산 방법별 생산단가 분석)

  • Lim, Mee-Sook;Bang, Jin-Hwan;Yoon, Young-Seek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.218-226
    • /
    • 2006
  • It can be obtained from hydrocarbon and water, specially production of hydrogen from natural gas is most commercial and economical process among the hydrogen production methods, and has been used widely. However, conventional hydrogen production methods are dependent on fossil fuel such as natural gas and coal, and it may be faced with problems such as exhaustion of fossil fuels, production of greenhouse gas and increase of feedstock price. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. However, nuclear hydrogen must be economical comparing with conventional hydrogen production method. Therefore, hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

PERSPECTIVES OF NUCLEAR HEAT AND HYDROGEN

  • Lee, Won-Jae;Kim, Yong-Wan;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.413-426
    • /
    • 2009
  • Nuclear energy plays an important role in world energy production by supplying 6% of the world's current total electricity production. However, 86% of the energy consumed worldwide to produce industrial process heat, to generate electricity and to power the transportation sector still originates in fossil fuels. To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels in these sectors is urgently required. Clean hydrogen energy is one such alternative. Clean hydrogen can play an important role not only in synthetic fuel production but also through powering fuel cells in the anticipated hydrogen economy. With the introduction of the high temperature gas-cooled reactor (HTGR) that can produce nuclear heat up to $950^{\circ}C$ without greenhouse gas emissions, nuclear power is poised to broaden its mission beyond electricity generation to the provision of nuclear process heat and the massive production of hydrogen. In this paper, the features and potential of the HTGR as the energy source of the future are addressed. Perspectives on nuclear heat and hydrogen applications using the HTGR are discussed.