• Title/Summary/Keyword: Nuclear hormone receptor

Search Result 55, Processing Time 0.024 seconds

Porcine growth hormone induces the nuclear localization of porcine growth hormone receptor in vivo

  • Lan, Hainan;Liu, Huilin;Hong, Pan;Li, Ruonan;Zheng, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.499-504
    • /
    • 2018
  • Objective: Recent studies have challenged the traditional paradigm that growth hormone receptor (GHR) displays physiological functions only in the cell membrane. It has been demonstrated that GHR localizes to the cell nucleus and still exhibits important physiological roles. The phenomenon of nuclear localization of growth hormone (GH)-induced GHR has previously been described in vitro. However, until recently, whether GH could induce nuclear localization of GHR in vivo was unclear. Methods: In the present study, we used pig as an animal model, and porcine growth hormone (pGH) or saline was injected into the inferior vena cava. We subsequently observed the localization of porcine growth hormone receptor (pGHR) using multiple techniques, including, immunoprecipitation and Western-blotting, indirect immunofluorescence assay and electronmicroscopy. Results: The results showed that pGH could induce nuclear localization of pGHR. Taken together, the results of the present study provided the first demonstration that pGHR was translocated to cell nuclei under pGH stimulation in vivo. Conclusion: Nuclear localization of pGHR induced by the in vivo pGH treatment suggests new functions and/or novel roles of nuclear pGHR, which deserve further study.

Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors

  • Park, Joonwoo;Song, Heewon;Kim, Si-Kwan;Lee, Myeong Soo;Rhee, Dong-Kwon;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • Ginseng has been used in China for at least two millennia and is now popular in over 35 countries. It is one of the world's popular herbs for complementary and alternative medicine and has been shown to have helpful effects on cognition and blood circulation, as well as anti-aging, anti-cancer, and anti-diabetic effects, among many others. The pharmacological activities of ginseng are dependent mainly on ginsenosides. Ginsenosides have a cholesterol-like four trans-ring steroid skeleton with a variety of sugar moieties. Nuclear receptors are one of the most important molecular targets of ginseng, and reports have shown that members of the nuclear receptor superfamily are regulated by a variety of ginsenosides. Here, we review the published literature on the effects of ginseng and its constituents on two main sex steroid hormone receptors: estrogen and androgen receptors. Furthermore, we discuss applications for sex steroid hormone receptor modulation and their therapeutic efficacy.

Recent Progress in Orphan Nuclear Hormone Receptors

  • Lee, Yoon-Kwang;Tzameli, Iphigeoia;Zavacki, Ann Marie;Moore, David D.
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.419-426
    • /
    • 1998
  • The nuclear hormone receptor superfamily currently includes approximately equal numbers of conventional receptors and orphan receptors, which do not have known ligands. Here, we review recent progress from this laboratory on three orphans, two of which are moving from orphan to conventional receptor status. Perhaps the most unusual is CAR, which is a constitutive transactivator in the absence of ligands but becomes transcriptionally inactive in the presence of its ligands, which are androgen metabolites. The response of CAR to its ligands is thus opposite to that of the conventional receptor paradigm. RIP14 (also known as FXR) is activated by both all-trans retinoic acid and a synthetic retinoid previously thought to specifically target the retinoic acid receptors (RARs), and thus appears to be a novel retinoid receptor. Finally, SHP is a novel orphan that lacks a DNA binding domain and interacts with a number of other receptor superfamily members. While it generally inhibits its targets, including CAR, the retinoid X receptor (RXR), and the estrogen receptor (ER), it stimulates transactivation by the orphan SF-1.

  • PDF

Retinoid X Receptor Isoforms $\alpha$ and $\beta$ Differentially Regulate 3,5,3’ -Triiodothyronine- induced Transcription

  • Rhee, Myung-chull
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.489-493
    • /
    • 1998
  • Various heterodimers of the thyroid hormone receptor (TR) with other nuclear hormone receptors confer a wide range of transcriptional activities on thyroid hormone response elements (TREs) in the presence of the thyroid hormone ($T_3$). The present study analyzed the potential roles of retinoid X receptor (RXR) isoforms $\alpha$ and $\beta$ in $T_3$-mediated transcription on a well characterized TRE, a direct repeat of AGGTCA separated by four nucleo-tides (DR4), using electrophoretic mobility shift assays and transient transfection in CV-1 cells. We demonstrated that RXR$\alpha$ supressed liganded $TR_{\alpha}$-induced transcription while $RXR_{\beta}$ did not although both $TR_{\alpha}/RXR_{\alpha}$ and $TR_{\alpha}/RXR_{\beta}$ heterodimers were the predominant forms bound to the TRE-DR4 in the presence of $T_3$. We further demonstrated using Scatchard analysis that the two heterodimers had similar affinities for the TRE-DR4. All these observations suggest that the TRE-DR4 accomodates different types of TR/RXR heterodimers for a more finely tuned transcriptional response to $T_3$.

  • PDF

Lead Discovery and Optimization towards FXR Specific Compounds

  • Jeon , Raok
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.346.1-346.1
    • /
    • 2002
  • FXR (farnesoid X-activated receptor) is a member of nuclear steroid hormone receptor superfamily and especially a orphan receptor, which are able to control mevalonate pathway upon activation by binding of the specific ligands. We. have launched our study for development of FXR specific ligands getting on in lead discovery. A promising lead stilbene analog was obtained through the screening of a set of library compounds which was previously targeted for other nuclear receptors. And then synthetic modilication of the lead was perfoumde. In addition. fishing a new pharmacophore was fried by UNITT aearch. which brought new structural features.

  • PDF

Modification of Estrogenic Effect of Nonylphenol Combined with DEHP in Yeast-based Bioassay (형질전환효모를 이용한 내분비계장애물질검색과 Nonylphenol의 Estrogen 유사작용에 대한 DEHP의 상협작용)

  • 박미선;정해관;박현신;한의식;김종원;엄미옥;정상희;오혜영
    • Toxicological Research
    • /
    • v.17 no.1
    • /
    • pp.65-71
    • /
    • 2001
  • The key targets of endocrine disruptors are nuclear hormone receptors, which bind to steroid hormones and regulate their gene transcription. A yeast-based steroid hormone receptor gene trascription assay was previously developed for the evaluation of chemicals with endocrine modulating activity. The yeast transformants used in this assay contain the human estrogen receptor along with the appropriate steroid response elements upstream of the $\beta$-galactosidase reporter gene. We tried to evaluate several natural and synthetic steroids of their potential to interact directly with the steroid receptor. Some putative endocrine disruptors, including nonylphenol, are weakly estrogenic. But the combined treatment oj these chemicals with di-(2-ethylhexyl)phthalate (DEHP) significantly increased the $\beta$-galactosidase activity in the yeast transformant. These results suggest that we also have to consider the synergistic effects of endocrine disruptors. In this study, we showed that yeast-based bioassay is a valuable tool for screening potential endocrine disruptors and quantitative determination of estrogenicity. And the possibility that the estrogen receptor binds multiple environmental chemicals adds another level of complexity to the interaction between the endocrine disruptors and the human hormone system.

  • PDF

Effect of Retinoic Acid, Thyroid Hormone and Hydrocortisone on Viability and Differentiation in SK-N-SB Neuroblastoma Cell Lines (Neuroblastoma세포의 생존과 분화에 미치는 retinoic acid, thyroid hormone, 및 hydrocortisone의 작용)

  • 이경은;배영숙
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.285-292
    • /
    • 2000
  • The effects of the members of the same nuclear receptor superfamily (all-trans retinoic acid (RA), thyroid hormone(T3) or hydrocortisone) on proliferation and differentiation in the SK-N-SH neuroblastoma (NB) cell lines were studied. NB cells were treated with RA, T3, or hydrocortisone at concentration of 10$^{-6}$ M or 10$^{-8}$ M for 3 days or 7 days. RA induced concentration- and time-dependent morphologic differentiation(neurite outgrowth and microtubule-associated protein expression) and growth inhibition in NB cells. Treatment of 10$^{-7}$ M T3 for 7 days increased viability and differentiation of NB cells. Treatment of 10$^{-6}$ M hydrocortisone for 7 days increased viability of NB cells. Although these three effectors are members of the same receptor superfamily, the regulation of brain development may be carried out in a different manner.

  • PDF

EID-1 Interacts with Orphan Nuclear Receptor SF-1 and Represses Its Transactivation

  • Park, Yun-Yong;Park, Ki Cheol;Shong, Minho;Lee, Soon-Jung;Lee, Young-Ho;Choi, Hueng-Sik
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.372-377
    • /
    • 2007
  • The orphan nuclear receptor, SF-1, plays a pivotal role in the development and differentiation of the endocrine and reproductive systems, and also regulates the transcription of a host of genes, including those encoding several steroidogenic enzymes and gonadotropins. We found that a previously unidentified repressor, EID-1, is an SF-1-interacting protein that inhibits the transactivation of SF-1. A transient transfection assay revealed that EID-1 inhibits SF-1, but not LRH-1, $ERR{\gamma}$, or mCAR. Using the yeast two hybrid and GST pull-down assays, we determined that EID-1 interacted strongly with SF-1. In addition, it colocalized with SF-1 in mammalian cells and interacted specifically with the AF-2 domain of SF-1, competing with SRC-1 to inhibit SF-1 transactivation. EID-1 is expressed in the mouse testis, and its expression decreases during testis development. The results of the present study suggest that EID-1 can act as a repressor, regulating the function of SF-1.

The role of p21/CIP1/WAF1 (p21) in the negative regulation of the growth hormone/growth hormone receptor and epidermal growth factor/epidermal growth factor receptor pathways, in growth hormone transduction defect

  • Kostopoulou, Eirini;Gil, Andrea Paola Rojas;Spiliotis, Bessie E.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.204-209
    • /
    • 2018
  • Purpose: Growth hormone transduction defect (GHTD) is characterized by severe short stature, impaired STAT3 (signal transducer and activator of transcription-3) phosphorylation and overexpression of the cytokine inducible SH2 containing protein (CIS) and p21/CIP1/WAF1. To investigate the role of p21/CIP1/WAF1 in the negative regulation of the growth hormone (GH)/GH receptor and Epidermal Growth Factor (EGF)/EGF Receptor pathways in GHTD. Methods: Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control. The protein expression and the cellular localization of p21/CIP1/WAF1 was studied by Western immunoblotting and immunofluorescence, respectively: at the basal state and after induction with $200-{\mu}g/L$ human GH (hGH) (GH200), either with or without siRNA CIS (siCIS); at the basal state and after inductions with $200-{\mu}g/L$ hGH (GH200), $1,000-{\mu}g/L$ hGH (GH1000) or 50-ng/mL EGF. Results: After GH200/siCIS, the protein expression and nuclear localization of p21 were reduced in the patient. After successful induction of GH signaling (control, GH200; patient, GH1000), the protein expression and nuclear localization of p21 were reduced. After induction with EGF, p21 translocated to the cytoplasm in the control, whereas in the GHTD patient it remained located in the nucleus. Conclusion: In the GHTD fibroblasts, when CIS is reduced, either after siCIS or after a higher dose of hGH (GH1000), p21's antiproliferative effect (nuclear localization) is also reduced and GH signaling is activated. There also appears to be a positive relationship between the 2 inhibitors of GH signaling, CIS and p21. Finally, in GHTD, p21 seems to participate in the regulation of both the GH and EGF/EGFR pathways, depending upon its cellular location.