• Title/Summary/Keyword: Nuclear fuel

Search Result 3,680, Processing Time 0.032 seconds

Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

  • Yu, Seon Oh;Cho, Yong Jin;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.979-988
    • /
    • 2017
  • The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.

Neutronic investigation of waste transmutation option without partitioning and transmutation in a fusion-fission hybrid system

  • Hong, Seong Hee;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1060-1067
    • /
    • 2018
  • A feasibility of reusing option of spent nuclear fuel in a fusion-fission hybrid system without partitioning was checked as an alternative option of pyro-processing with critical reactor system. Neutronic study was performed with MCNP 6.1 for this option, direct reuse of spent PWR fuel (DRUP). Various options with DRUP fuel were compared with the reference design concept; transmutation purpose blanket with (U-TRU)Zr fuel loading connected with pyro-processing. Performance parameters to be compared are transmutation performance of transuranic (TRU) nuclides, required fusion power and tritium breeding ratio (TBR). When blanket part is loaded only with DRUP, initial $k_{eff}$ level becomes too low to maintain a practical subcritical system, increasing the required fusion power. In this case, production rate of TRU nuclides exceeds the incineration rate. Design optimization is done for combining DRUP fuel with (U-TRU)Zr fuel. Reactivity swing is reduced to about 2447 pcm through fissile breeding compared to (U-TRU)Zr fuel option. Therefore, a required fusion power is reduced and tritium breeding performance is improved. However, transmutation performance with TRU nuclides especially $^{241}Am$ is degraded because of softening effect of spectrum. It is known that partitioning and transmutation should be accompanied with fusion-fission hybrid system for the effective transmutation of TRU.

Material attractiveness of irradiated fuel salts from the Seaborg Compact Molten Salt Reactor

  • Vaibhav Mishra;Erik Branger;Sophie Grape;Zsolt Elter;Sorouche Mirmiran
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3969-3980
    • /
    • 2024
  • Over the years, numerous evaluations of material attractiveness have been performed for conventional light water reactors to better understand the nature of the spent fuel material and its desirability for misuse at different points in the nuclear fuel cycle. However, availability of such assessments for newer, Generation IV reactors such as Molten Salt Reactors is rather limited. In the present study we address the gap in knowledge of material attractiveness for molten salt reactor systems and describe the nature of irradiated fuel salts which the nuclear safeguards community might be faced with in the near future as more and more such reactors enter commission and operation. Within the scope of the paper, we use a large database of simulated irradiated fuel salt isotopics (and other derived quantities such as gamma activity, decay heat, and neutron emission rates) developed specifically for a molten salt reactor concept in order to shed some light on possible weapons usability of uranium and plutonium present in the irradiated fuel salts. This has been achieved by proposing a new attractiveness metric that is better suited for quantifying attractiveness of irradiated salts from a model molten salt concept. The said metric has been computed using a database that has been created by simulating the irradiation of molten fuel salt in a concept core over a wide range of operational parameters (burnup, initial enrichment, and cooling time) using the Monte-Carlo particle transport code, Serpent. With the help of this attractiveness metric, the findings from this study have shown that in relative terms, molten salt spent fuel is more attractive than spent fuel produced by a conventional light water reactor. The findings also underscore the need for strengthened safeguards measures for such spent fuel. These results are expected to be useful in the future for regulatory authorities as well as for nuclear safeguards inspectors for designing a functional safeguards verification routine for irradiated fuel of such unique nature.

Measurement of nuclear fuel assembly's bow from visual inspection's video record

  • Dusan Plasienka;Jaroslav Knotek;Marcin Kopec;Martina Mala;Jan Blazek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1485-1494
    • /
    • 2023
  • The bow of the nuclear fuel assembly is a well-known phenomenon. One of the vital criteria during the history of nuclear fuel development has been fuel assembly's mechanical stability. Once present, the fuel assembly bow can lead to safety issues like excessive water gap and power redistribution or even incomplete rod insertion (IRI). The extensive bow can result in assembly handling and loading problems. This is why the fuel assembly's bow is one of the most often controlled geometrical factors during periodic fuel inspections for VVER when compared e.g. to on-site fuel rod gap measurements or other instrumental measurements performed on-site. Our proposed screening method uses existing video records for fuel inspection. We establish video frames normalization and aggregation for the purposes of bow measurement. The whole process is done by digital image processing algorithms which analyze rotations of video frames, extract angles whose source is the fuel set torsion, and reconstruct torsion schema. This approach provides results comparable to the commonly utilized method. We tested this new approach in real operation on 19 fuel assemblies with different campaign numbers and designs, where the average deviation from other methods was less than 2 % on average. Due to the fact, that the method has not yet been validated during full scale measurements of the fuel inspection, the preliminary results stand for that we recommend this method as a complementary part of standard bow measurement procedures to increase measurement robustness, lower time consumption and preserve or increase accuracy. After completed validation it is expected that the proposed method allows standalone fuel assembly bow measurements.

Sintering and Characterization of SiC-matrix Composite Including TRISO Particles (TRISO 입자를 포함하는 SiC 복합소결체의 소결 및 특성 평가)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.418-423
    • /
    • 2014
  • Fully ceramic micro encapsulated (FCM) nuclear fuel is a concept recently proposed for enhancing the stability of nuclear fuel. FCM nuclear fuel consists of tristructural-isotropic (TRISO) fuel particles within a SiC matrix. Each TRISO fuel particle is composed of a $UO_2$ kernel and a PyC/SiC/PyC tri-layer which protects the kernel. The SiC ceramic matrix is created by sintering. In this FCM fuel concept, fission products are protected twice, by the TRISO coating layer and by the SiC ceramic. The SiC ceramic has proven attractive for fuel applications owing to its low neutron-absorption cross-section, excellent irradiation resistivity, and high thermal conductivity. In this study, a SiC-matrix composite containing TRISO particles was sintered by hot pressing with $Al_2O_3-Y_2O_3$ additive system. Various sintering conditions were investigated to obtain a relative density greater than 95%. The internal distribution of TRISO particles within the SiC-matrix composite was observed using an x-ray radiograph. The fracture of the TRISO particles was investigated by means of analysis of the cross-section of the SiC-matrix composite.