• Title/Summary/Keyword: Nuclear engineering

Search Result 9,735, Processing Time 0.041 seconds

Systems Engineer Program for Practical Nuclear Power Plant Engineering Education (실용적인 원전공학 교육을 위한 시스템즈 엔지니어 프로그램)

  • Chang, Choong-koo;Jung, Jae-cheon;DIA, Aminata
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.31-40
    • /
    • 2015
  • KEPCO International Nuclear Graduate School (KINGS) is dedicated to nurturing leadership-level professionals in nuclear power plant (NPP) engineering. KINGS have designed curriculum based on two philosophies. First, we balance aspects of discipline engineering, specialty engineering, and management engineering in the framework of systems engineering. Second, KINGS have designed the curriculum so that students can learn and experience the know-what, know-how and know-why level knowledge of NPP engineering and management. The specialization programs are opened during the 2nd year for 3 trimesters and those are a process of learning through practical project courses. The objectives of the specialization programs are to help students to learn the NPP life cycle technologies in highly structured and systematic ways. The systems engineer program (SEP) is one of the specialization programs. A practical case of the SEP which was applied to the project course for the NPP electric power system design education will be elaborated in this paper.

Uncertainty quantification in decay heat calculation of spent nuclear fuel by STREAM/RAST-K

  • Jang, Jaerim;Kong, Chidong;Ebiwonjumi, Bamidele;Cherezov, Alexey;Jo, Yunki;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2803-2815
    • /
    • 2021
  • This paper addresses the uncertainty quantification and sensitivity analysis of a depleted light-water fuel assembly of the Turkey Point-3 benchmark. The uncertainty of the fuel assembly decay heat and isotopic densities is quantified with respect to three different groups of diverse parameters: nuclear data, assembly design, and reactor core operation. The uncertainty propagation is conducted using a two-step analysis code system comprising the lattice code STREAM, nodal code RAST-K, and spent nuclear fuel module SNF through the random sampling of microscopic cross-sections, fuel rod sizes, number densities, reactor core total power, and temperature distributions. Overall, the statistical analysis of the calculated samples demonstrates that the decay heat uncertainty decreases with the cooling time. The nuclear data and assembly design parameters are proven to be the largest contributors to the decay heat uncertainty, whereas the reactor core power and inlet coolant temperature have a minor effect. The majority of the decay heat uncertainties are delivered by a small number of isotopes such as 241Am, 137Ba, 244Cm, 238Pu, and 90Y.

Experimental measurement of stiffness coefficient of high-temperature graphite pebble fuel elements in helium at high temperatures

  • Minghao Si;Nan Gui;Yanfei Sun;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1679-1686
    • /
    • 2024
  • Graphite material plays an important role in nuclear reactors especially the high-temperature gas-cooled reactors (HTGRs) by its outstanding comprehensive nuclear properties. The structural integrity of graphite pebble fuel elements is the first barrier to core safety under any circumstances. The correct knowledge of the stiffness coefficient of the graphite pebble fuel element inside the reactor's core is significant to ensure the valid design and inherent safety. In this research, a vertical extrusion device was set up to measure the stiffness coefficient of the graphite pebble fuel element by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. The stiffness coefficient equations of graphite pebble fuel elements at different temperatures are given (in a helium atmosphere). The result first provides the data on the high-temperature stiffness coefficient of pebbles in helium gas. The result will be helpful for the engineering safety analysis of pebble-bed nuclear reactors.

Digitalization as an aggregate performance in the energy transition for nuclear industry

  • Florencia de los Angeles Renteria del Toro;Chen Hao;Akira Tokuhiro;Mario Gomez-Fernandez;Armando Gomez-Torres
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1267-1276
    • /
    • 2024
  • The emerging technologies at the industrial level have deployed rapidly within the energy transition process innovations. The nuclear industry incorporates several technologies like Artificial Intelligence (AI), Machine Learning (ML), Digital Twins, High-Performance-Computing (HPC) and Quantum Computing (QC), among others. Factors identifications are explained to set up a regulatory framework in the digitalization era, providing new capabilities paths for nuclear technologies in the forthcoming years. The Analytical Network Process (ANP) integrates the quantitative-qualitative decision-making analysis to assess the implementation of different aspects in the digital transformation for the New-Energy Transition Era (NETE) with a Nuclear Power Infrastructure Development (NPID).

A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors

  • Cechet, A.;Altieri, S.;Barani, T.;Cognini, L.;Lorenzi, S.;Magni, A.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1893-1908
    • /
    • 2021
  • In light of the importance of helium production in influencing the behaviour of fast reactor fuels, in this work we present a burn-up module with the objective to calculate the production of helium in both in-pile and out-of-pile conditions tracking the evolution of 23 alpha-decaying actinides. This burn-up module relies on average microscopic cross-section look-up tables generated via SERPENT high-fidelity calculations and involves the solution of the system of Bateman equations for the selected set of actinide nuclides. The results of the burn-up module are verified in terms of evolution of actinide and helium concentrations by comparing them with the high-fidelity ones from SERPENT, considering two representative test cases of (U,Pu)O2 fuel in fast reactor conditions. In addition, a code-to-code comparison is made with the independent state-of-the-art module TUBRNP (implemented in the TRANSURANUS fuel performance code) for the same test cases. The herein presented burn-up module is available in the SCIANTIX code, designed for coupling with fuel performance codes.