• Title/Summary/Keyword: Nuclear engineering

Search Result 9,735, Processing Time 0.039 seconds

Development of an Accident Sequence Precursor Methodology and its Application to Significant Accident Precursors

  • Jang, Seunghyun;Park, Sunghyun;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.313-326
    • /
    • 2017
  • The systematic management of plant risk is crucial for enhancing the safety of nuclear power plants and for designing new nuclear power plants. Accident sequence precursor (ASP) analysis may be able to provide risk significance of operational experience by using probabilistic risk assessment to evaluate an operational event quantitatively in terms of its impact on core damage. In this study, an ASP methodology for two operation mode, full power and low power/shutdown operation, has been developed and applied to significant accident precursors that may occur during the operation of nuclear power plants. Two operational events, loss of feedwater and steam generator tube rupture, are identified as ASPs. Therefore, the ASP methodology developed in this study may contribute to identifying plant risk significance as well as to enhancing the safety of nuclear power plants by applying this methodology systematically.

Application of particle filtering for prognostics with measurement uncertainty in nuclear power plants

  • Kim, Gibeom;Kim, Hyeonmin;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1314-1323
    • /
    • 2018
  • For nuclear power plants (NPPs) to have long lifetimes, ageing is a major issue. Currently, ageing management for NPP systems is based on correlations built from generic experimental data. However, each system has its own characteristics, operational history, and environment. To account for this, it is possible to resort to prognostics that predicts the future state and time to failure (TTF) of the target system by updating the generic correlation with specific information of the target system. In this paper, we present an application of particle filtering for the prediction of degradation in steam generator tubes. With a case study, we also show how the prediction results vary depending on the uncertainty of the measurement data.

Unsupervised learning algorithm for signal validation in emergency situations at nuclear power plants

  • Choi, Younhee;Yoon, Gyeongmin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1230-1244
    • /
    • 2022
  • This paper proposes an algorithm for signal validation using unsupervised methods in emergency situations at nuclear power plants (NPPs) when signals are rapidly changing. The algorithm aims to determine the stuck failures of signals in real time based on a variational auto-encoder (VAE), which employs unsupervised learning, and long short-term memory (LSTM). The application of unsupervised learning enables the algorithm to detect a wide range of stuck failures, even those that are not trained. First, this paper discusses the potential failure modes of signals in NPPs and reviews previous studies conducted on signal validation. Then, an algorithm for detecting signal failures is proposed by applying LSTM and VAE. To overcome the typical problems of unsupervised learning processes, such as trainability and performance issues, several optimizations are carried out to select the inputs, determine the hyper-parameters of the network, and establish the thresholds to identify signal failures. Finally, the proposed algorithm is validated and demonstrated using a compact nuclear simulator.

Round robin analysis of vessel failure probabilities for PTS events in Korea

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik;Kim, Maan-Won;Kim, Tae-Hyeon;Kim, Jong-Min;Kim, Min Chul;Lee, Bong Sang;Kim, Jong-Min;Kim, Kyuwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1871-1880
    • /
    • 2020
  • Round robin analyses for vessel failure probabilities due to PTS events are proposed for plant-specific analyses of all types of reactors developed in Korea. Four organizations, that are responsible for regulation, operation, research and design of the nuclear power plant in Korea, participated in the round robin analysis. The vessel failure probabilities from the probabilistic fracture mechanics analyses are calculated to assure the structural integrity of the reactor pressure vessel during transients that are expected to initiate PTS events. The failure probabilities due to various parameters are compared with each other. All results are obtained based on several assumptions about material properties, flaw distribution data, and transient data such as pressure, temperature, and heat transfer coefficient. The realistic input data can be used to obtain more realistic failure probabilities. The various results presented in this study will be helpful not only for benchmark calculations, result comparisons, and verification of PFM codes developed but also as a contribution to knowledge management for the future generation.

Convergence study of traditional 2D/1D coupling method for k-eigenvalue neutron transport problems with Fourier analysis

  • Boran Kong ;Kaijie Zhu ;Han Zhang ;Chen Hao ;Jiong Guo ;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1350-1364
    • /
    • 2023
  • 2D/1D coupling method is an important neutron transport calculation method due to its high accuracy and relatively low computation cost. However, 2D/1D coupling method may diverge especially in small axial mesh size. To analyze the convergence behavior of 2D/1D coupling method, a Fourier analysis for k-eigenvalue neutron transport problems is implemented. The analysis results present the divergence problem of 2D/1D coupling method in small axial mesh size. Several common attempts are made to solve the divergence problem, which are to increase the number of inner iterations of the 2D or 1D calculation, and two times 1D calculations per outer iteration. However, these attempts only could improve the convergence rate but cannot deal with the divergence problem of 2D/1D coupling method thoroughly. Moreover, the choice of axial solvers, such as DGFEM SN and traditional SN, and its effect on the convergence behavior are also discussed. The results show that the choice of axial solver is a key point for the convergence of 2D/1D method. The DGFEM SN based 2D/1D method could converge within a wide range of optical thickness region, which is superior to that of traditional SN method.

Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors

  • Heo, Jin Young;Park, Jung Hwan;Chae, Yong Jae;Oh, Seung Hwan;Lee, So Young;Lee, Ju Yeon;Gnanapragasam, Nirmal;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2427-2444
    • /
    • 2021
  • The lack of plant-side energy storage analysis to support nuclear power plants (NPP), has setup this research endeavor to understand the characteristics and role of specific storage technologies and the integration to an NPP. The paper provides a qualitative review of a wide range of configurations for integrating the energy storage system (ESS) to an operating NPP with pressurized water reactor (PWR). The role of ESS technologies most suitable for large-scale storage are evaluated, including thermal energy storage, compressed gas energy storage, and liquid air energy storage. The methods of integration to the NPP steam cycle are introduced and categorized as electrical, mechanical, and thermal, with a review on developments in the integration of ESS with an operating PWR. By adopting simplified off-design modeling for the steam turbines and heat exchangers, the results show the performance of the PWR steam cycle changes with respect to steam bypass rate for thermal and mechanical storage integration options. Analysis of the integrated system characteristics of proposed concepts for three different ESS suggests that certain storage technologies could support steady operation of an NPP. After having reviewed what have been accomplished through the years, the research team presents a list of possible future works.

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.