• 제목/요약/키워드: Nuclear data libraries

검색결과 31건 처리시간 0.02초

Sensitivity and uncertainty quantification of neutronic integral data in the TRIGA Mark II research reactor

  • Makhloul, M.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Lahdour, M.;Kaddour, M.;Ahmed, Abdulaziz;Arectout, A.;El Yaakoubi, H.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.523-531
    • /
    • 2022
  • In order to study the sensitivity and the uncertainty of the Moroccan research reactor TRIGA Mark II, a model of this reactor has been developed in our ERSN laboratory for use with the N-Particle MCNP Monte Carlo transport codes (version 6). In this article, the sensitivities of the effective multiplication factor of this reactor are evaluated using the ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0 libraries and in 44 energy groups, for the cross sections of the fuel (U-235 and U-238) and the moderator (H-1 and O-16). However, the quantification of the uncertainty of the nuclear data is performed using the nuclear code NJOY99 for the generation and processing of covariance matrices. On the one hand, the highest uncertainty deviations, calculated using the ENDFB-VII.1 and JENDL4.0 evaluations, are 2275, 386 and 330 pcm respectively for the reactions U235(n, f), $ U_{235}(n\bar{\nu})$ and H1(n, γ). On the other hand, these differences are very small for the neutron reactions of O-16 and U-238. Regarding the neutron spectra, in CT-mid plane, they are very close for the three evaluations (ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0). These spectra present two peaks (thermal and fission) around the energies 0.05 eV and 1 MeV.

Comprehensive validation of silicon cross sections

  • Czakoj, Tomas;Kostal, Michal;Simon, Jan;Soltes, Jaroslav;Marecek, Martin;Capote, Roberto
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2717-2724
    • /
    • 2020
  • Silicon, especially silicon in the form of SiO2, is a major component of rocks. Final spent fuel storages, which are being designed, are located in suitable rock formations in the Earth's crust. Reduction of the uncertainty of silicon neutron scattering and capture is needed; improved silicon evaluations have been recently produced by the ORNL/IAEA collaboration within the INDEN project. This paper deals with the nuclear data validation of that evaluation performed at the LR-0 reactor by means of critical experiments and measurement of reaction rates. Large amounts of silicon were used both as pure crystalline silicon and SiO2 sand. The critical moderator level was measured for various core configurations. Reaction rates were determined in the largest core configuration. Simulations of the experimental setup were performed using the MCNP6.2 code. The obtained results show the improvement in silicon cross-sections in the INDEN evaluations compared to existing evaluations in major libraries. The new Thermal Scattering Law for SiO2 published in ENDF/B-VIII.0 additionally reduces the discrepancy between calculation and experiments. However, an unphysical peak is visible in the neutron spectrum in SiO2 obtained by calculation with the new Thermal Scattering Law.

Interpretation of two SINBAD photon-leakage benchmarks with nuclear library ENDF/B-VIII.0 and Monte Carlo code MCS

  • Lemaire, Matthieu;Lee, Hyunsuk;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1355-1366
    • /
    • 2020
  • A review of the documentation and an interpretation of the NEA-1517/74 and NEA-1517/80 shielding benchmarks (measurements of photon leakage flux from a hollow sphere with a central 14 MeV neutron source) from the SINBAD database with the Monte Carlo code MCS and the most up-to-date ENDF/B-VIII.0 neutron data library are conducted. The two analyzed benchmarks describe satisfactorily the energy resolution of the photon detector and the geometry of the spherical samples with inner beam tube, tritium target and cooling water circuit, but lack information regarding the detector geometry and the distances of shields and collimators relatively to the neutron source and the detector. Calculations are therefore conducted for a sphere model only. A preliminary verification of MCS neutron-photon calculations against MCNP6.2 is first conducted, then the impact of modelling the inner beam tube, tritium target and cooling water circuit is assessed. Finally, a comparison of calculated results with the libraries ENDF/B-VII.1 and ENDF/B-VIII.0 against the measurements is conducted and shows reasonable agreement. The MCS and MCNP inputs used for the interpretation are available as supplementary material of this article.

Neutronic simulation of the CEFR experiments with the nodal diffusion code system RAST-F

  • Tran, Tuan Quoc;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2635-2649
    • /
    • 2022
  • CEFR is a small core-size sodium-cooled fast reactor (SFR) using high enrichment fuel with stainless-steel reflectors, which brings a significant challenge to the deterministic methodologies due to the strong spectral effect. The neutronic simulation of the start-up experiments conducted at the CEFR have been performed with a deterministic code system RAST-F, which is based on the two-step approach that couples a multi-group cross-section generation Monte-Carlo (MC) code and a multi-group nodal diffusion solver. The RAST-F results were compared against the measurement data. Moreover, the characteristic of neutron spectrum in the fuel rings, and adjacent reflectors was evaluated using different models for generation of accurate nuclear libraries. The numerical solution of RAST-F system was verified against the full core MC solution MCS at all control rods fully inserted and withdrawn states. A good agreement between RAST-F and MCS solutions was observed with less than 120 pcm discrepancies and 1.2% root-mean-square error in terms of keff and power distribution, respectively. Meanwhile, the RAST-F result agreed well with the experimental values within two-sigma of experimental uncertainty. The good agreement of these results indicating that RAST-F can be used to neutronic steady-state simulations for small core-size SFR, which was challenged to deterministic code system.

Occupational radiation exposure control analyses of 14 MeV neutron generator facility: A neutronic assessment for the biological and local shield design

  • Swami, H.L.;Vala, S.;Abhangi, M.;Kumar, Ratnesh;Danani, C.;Kumar, R.;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1784-1791
    • /
    • 2020
  • The 14 MeV neutron generator facility is being developed by the Institute for Plasma Research India to conduct the lab scale experiments related to Indian breeding blanket system for ITER and DEMO. It will also be utilized for material testing, shielding experiments and development of fusion diagnostics. Occupational radiation exposure control is necessary for the all kind of nuclear facilities to get the operational licensing from governing authorities and nuclear regulatory bodies. In the same way, the radiation exposure for the 14 MeV neutron generator facility at the occupational worker area and accessible zones for general workers should be under the permissible limit of AERB India. The generator is designed for the yield of 1012 n/s. The shielding assessment has been made to estimate the radiation dose during the operational time of the neutron generator. The facility has many utilities and constraints like ventilation ducts, accessible doors, accessibility of neutron generator components and to conduct the experiments which make the shielding assessment challenging to provide proper safety for occupational workers and the general public. The neutron and gamma dose rates have been estimated using the MCNP radiation transport code and ENDF -VII nuclear data libraries. The ICRP-74 fluence to dose conversion coefficients has been used for the assessment. The annual radiation exposure has been assessed by considering 500 h per year operational time. The provision of local shield near to neutron generator has been also evaluated to reduce the annual radiation doses. The comprehensive results of radiation shielding capability of neutron generator building and local shield design have been presented in the paper along with detailed maps of radiation field.

Analysis of the CREOLE experiment on the reactivity temperature coefficient of the UO2 light water moderated lattices using Monte Carlo transport calculations and ENDF/B-VII.1 nuclear data library

  • El Ouahdani, S.;Erradi, L.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Boulaich, Y.;Ahmed, A.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1120-1130
    • /
    • 2020
  • The CREOLE experiment performed In the EOLE critical facility located In the Nuclear Center of CADARACHE - CEA have allowed us to get interesting and complete experimental information on the temperature effects in the light water reactor lattices. To analyze these experiments with accuracy an elaborate calculation scheme using the Monte Carlo method implemented in the MCNP6.1 code and the ENDF/B-VII.1 cross section library has been developed. We have used the ENDF/B-VII.1 data provided with the MCNP6.1.1 version in ACE format and the Makxsf utility to handle the data in the specific temperatures not available in the MCNP6.1.1 original library. The main purpose of this analysis is the qualification of the ENDF/B-VII.1 nuclear data for the prediction of the Reactivity Temperature Coefficient while ensuring the ability of the MCNP6.1 system to model such a complex experiment as CREOLE. We have analyzed the case of UO2 lattice with 1166 ppm of boron in ordinary water moderator in specified temperatures. A detailed comparison of the calculated effective multiplication factors with the reference ones [1] in room temperature presented in this work shows a good agreement demonstrating the validation of our 3D calculation model. The discrepancies between calculations and the differential measurements of the Reactivity Temperature Coefficient for the analyzed configuration are relatively small: the maximum discrepancy doesn't exceed 1,1 pcm/℃. In addition to the analysis of direct differential measurements of the reactivity temperature coefficient performed in the poisoned UO2 lattice configuration, we have also analyzed integral measurements in UO2 clean lattice configuration using equivalency of the integral temperature reactivity worth with the driver core fuel reactivity worth and soluble boron reactivity worth. In this case both of the ENDF/B-VII.1 and JENDL.4 libraries were used in our analysis and the obtained results are very similar.

400 MeV/nucleon 12C 이온의 MCNPX 와 핵자료를 이용한 차폐 벤치마킹 계산 (400 MeV/nucleon 12C Ions Shielding Benchmark Calculations using MCNPX with Different Nuclear Data Libraries)

  • 신윤성;김용민;김동현;정남석;이희석
    • 한국방사선학회논문지
    • /
    • 제9권5호
    • /
    • pp.295-300
    • /
    • 2015
  • 현재 우리나라는 포항방사광가속기와 국립암센터의 양성자 치료용 가속기와 경주 양성자 가속기가 운영되고 있고 중이온 가속기, 4세대 방사광가속기 등 대형가속기 시설이 건설 중에 있다. 이들 시설에서 고에너지로 가속된 입사입자는 표적물질과 상호작용 후 2차 중성자를 발생시키고, 이 중성자는 가속기 구조물 및 주변 콘크리트, 토양, 지하수 등을 방사화 시킨다. 따라서 이러한 가속기 시설의 안전적 측면을 고려할 때 방사화를 일으키는 중성자의 차폐가 중요하다. 본 연구는 차폐해석에 사용되는 몬테카를로 코드 중 MCNPX를 이용하여 $^{12}C$ beam빔과 표적물질(Cu)과의 상호작용 후 생성되는 중성자를 계산하고, 그 중성자의 철 차폐체와 콘크리트 차폐체의 두께별 투과 후 스펙트럼을 MCNPX의 JENDL/HE 07과 la150을 이용해 비교하여 계산하였다. 빔의 방향과 차폐체의 종류 및 두께에 따라 그 결과를 실험값과 비교하여 검증함으로써 핵자료의 특성을 확인하였으며 향후 대형가속기시설의 선량평가용 기반기술로 활용하고자 하였다.

A Comparative Study on Effective One-Group Cross-Sections of ORIGEN and FISPACT to Calculate Nuclide Inventory for Decommissioning Nuclear Power Plant

  • Cha, Gilyong;Kim, Soonyoung;Lee, Minhye;Kim, Minchul;Kim, Hyunmin
    • Journal of Radiation Protection and Research
    • /
    • 제47권2호
    • /
    • pp.99-106
    • /
    • 2022
  • Background: The radionuclide inventory calculation codes such as ORIGEN and FISPACT collapse neutron reaction libraries with energy spectra and generate an effective one-group cross-section. Since the nuclear cross-section data, energy group (g) structure, and other input details used by the two codes are different, there may be differences in each code's activation inventory calculation results. In this study, the calculation results of neutron-induced activation inventory using ORIGEN and FISPACT were compared and analyzed regarding radioactive waste classification and worker exposure during nuclear decommissioning. Materials and Methods: Two neutron spectra were used to obtain the comparison results: Watt fission spectrum and thermalized energy spectrum. The effective one-group cross-sections were generated for each type of energy group structure provided in ORIGEN and FISPACT. Then, the effective one-group cross-sections were analyzed by focusing on 59Ni, 63Ni, 94Nb, 60Co, 152Eu, and 154Eu, which are the main radionuclides of stainless steel, carbon steel, zircalloy, and concrete for decommissioning nuclear power plant (NPP). Results and Discussion: As a result of the analysis, 154Eu and 59Ni may be overestimated or underestimated depending on the code selection by up to 30%, because the cross-section library used for each code is different. When ORIGEN-44g, -49g, and -238g structures are selected, the differences of the calculation results of effective one-group cross-section according to group structure selection were less than 1% for the six nuclides applied in this study, and when FISPACT-69g, -172g, and -315g were applied, the difference was less than 1%, too. Conclusion: ORIGEN and FISPACT codes can be applied to activation calculations with their own built-in energy group structures for decommissioning NPP. Since the differences in calculation results may occur depending on the selection of codes and energy group structures, it is appropriate to properly select the energy group structure according to the accuracy required in the calculation and the characteristics of the problem.

텐서플로우 기반의 기계학습 보안 프로그램 (Machine-Learning Anti-Virus Program Based on TensorFlow)

  • 윤성권;박태용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.441-444
    • /
    • 2016
  • 최근 북한은 핵실험, 미사일 발사 등 물리적 도발은 물론 고위 공직자에 대한 스마트폰 해킹, 금융권에 대한 디도스(DDoS) 공격 등 사이버 테러를 감행하며 한반도 내 위협의 수위를 높이고 있다. 취약점에 대한 해킹, 악성코드 배포 등을 통해 이루어지는 사이버 공격은 일반적으로 최초의 침입과 공격 징후가 감지된 후 데이터 분석을 통해 백신의 라이브러리 추가 및 업데이트, 보안 취약성을 보완하는 등 소극적인 대응 방법을 취하고 있다. 본 논문에서는 프로그램 스스로 취약점을 분석하고 자가 라이브러리 추가, 보안 취약점 해결 등을 수행하는 구글 텐서플로우(TensorFlow) 기반의 기계학습 능력을 갖춘 보안 프로그램에 관한 개념을 연구하고 제안하였다.

  • PDF

Validation of the neutron lead transport for fusion applications

  • Schulc, Martin;Kostal, Michal;Novak, Evzen;Czakoj, Tomas;Simon, Jan
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.959-964
    • /
    • 2022
  • Lead is an important material, both for fusion or fission reactors. The cross sections of natural lead should be validated because lead is a main component of lithium-lead modules suggested for fusion power plants and it directly affects the crucial variable, tritium breeding ratio. The presented study discusses a validation of the lead transport libraries by dint of the activation of carefully selected activation samples. The high emission standard 252Cf neutron source was used as a neutron source for the presented validation experiment. In the irradiation setup, the samples were placed behind 5 and 10 cm of the lead material. Samples were measured using a gamma spectrometry to infer the reaction rate and compared with MCNP6 calculations using ENDF/B-VIII.0 lead cross sections. The experiment used validated IRDFF-II dosimetric reactions to validate lead cross sections, namely 197Au(n, 2n)196Au, 58Ni(n,p)58Co, 93Nb(n, 2n)92mNb, 115In(n,n')115mIn, 115In(n,γ)116mIn, 197Au(n,γ)198Au and 63Cu(n,γ)64Cu reactions. The threshold reactions agree reasonably with calculations; however, the experimental data suggests a higher thermal neutron flux behind lead bricks. The paper also suggests 252Cf isotropic source as a valuable tool for validation of some cross-sections important for fusion applications, i.e. reactions on structural materials, e.g. Cu, Pb, etc.