• 제목/요약/키워드: Nuclear Warhead Miniaturization

검색결과 2건 처리시간 0.019초

Prediction of Possible Intercept Time by Considering Flight Trajectory of Nodong Missile

  • Lee, Kyounghaing;Oh, Kyunngwon
    • International Journal of Aerospace System Engineering
    • /
    • 제3권2호
    • /
    • pp.14-21
    • /
    • 2016
  • This paper presents research on predicting the possible intercept time for a Nodong missile based on its flight trajectory. North Korea possesses ballistic missiles of various ranges, and nuclear warhead miniaturization tests and ballistic missile launch tests conducted last year and in previous years have made these missiles into a serious security threat for the international community. With North Korea's current miniaturization skills, the range of the nuclear capable Nodong missiles can be adjusted according to their use goals and operating environment by using a variety of adjustment methods such as payload, fuel mass, Isp, loft angle, cut-off, etc., and therefore precise flight trajectory prediction is difficult. In this regards, this research performs model simulations of the flight trajectory of North Korea's domestically developed Nodong missiles and uses these as a basis for predicting the possible intercept times for major ballistic missile defense systems such as PAC-3, THAAD, and SM-3.

북한 4·5차 핵실험의 기술적 평가 (Technical Assessment of North Korea 4th and 5th Nuclear Test)

  • 이호찬;이상규;정관
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.454-466
    • /
    • 2017
  • North Korea intended to increase the power of its nuclear weapons and standardize warhead to be loaded in ballistic missiles through the $4^{th}$ and $5^{th}$ nuclear tests. In this study, three kinds of nuclear weapons that North Korea might have used in the $4^{th}$ and $5^{th}$ nuclear tests to achieve their technical goals were suggested. Monte Carlo modeling and various technical assessments have shown that boosted fission weapons are most likely to be used. Also, using the empirical formula considering the burial depth of explosion, we found that the yield of the $4^{th}$ and $5^{th}$ nuclear tests is at least twice as strong as that is expected it could be and the initial design power could reach 8kt before amplification. This means that North Korea has already achieved a substantial level of nuclear fusion technology through the $4^{th}$ test and has made a breakthrough in the miniaturization of nuclear weapons through the $5^{th}$ test. After two or three additional tests, North Korea is expected to have nuclear missiles equipped with nuclear warhead by 2020, which is expected to complete ballistic missile development.