• 제목/요약/키워드: Nuclear Safety

Search Result 4,094, Processing Time 0.033 seconds

The volcanic aspect on determining Site of nuclear power plant in Indonesia: Gap analysis between standard and regulations

  • Widjanarko;Budi Santoso;Rismiyanto;Kurnia Anzhar;Joko Waluyo;Gustini H. Sayid;Khusnul Khotimah;Nicholas Bertony Saputra;Agus Teguh Pranoto;Hadi Suntoko;Siti Alimah;Sriyana;Roni Cahya Ciputra;Alfitri Meliana
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2875-2880
    • /
    • 2024
  • The development of nuclear power plants is in three phases. The first phase is a consideration before the decision on the NPP construction program is approved, the second phase is the preparatory work for making contracts and preparing for the construction of NPP after the NPP construction policy is approved, and the third phase is contracting, licensing and building the first NPP. As a volcanically active country, Indonesia contains over 130 active volcanoes that are part of the Pacific Ring of Fire. The volcanic aspect is one of the safety factors considered while deciding the location of an NPP. Research on the potential of natural external risks to the determination of nuclear power plants in Indonesia, including the volcanic aspect, has been conducted based on the safety reference or safety guide of the IAEA and the Nuclear Energy Regulatory Body (BAPETEN) Regulation. Due to technological advancements, safety needs have evolved so the existing Indonesia National Standard (SNI) must be updated to comply with BAPETEN regulations. The substance in SNI 18-2034-1990 relating to volcanic features seems less relevant in actual conditions, given that more complete and exact criteria for determining a site guarantee the safety and health of residents and surrounding the environment site. The study intends to conduct a gap analysis of volcanic issues in SNI and volcanic regulations. The method used is identification requirements for volcanic aspects in SNI 18-2034-1990 about Determining Site of Nuclear Reactor Guidance with BAPETEN Chairman Regulation (BCR) number 4 of 2018 about Nuclear Installation Site Evaluation Safety Provisions and BCR number 5 of 2015 about Evaluation of Nuclear Installation Sites for Volcanic Aspects, and analysis uses a qualitative method of inductive techniques. The outcome of this research applies to suggesting a revision of SNI number 18-2034-1990, especially the volcanic aspect.

Regulatory Oversight of Nuclear Safety Culture and the Validation Study on the Oversight Model Components

  • Choi, Young Sung;Jung, Su Jin;Chung, Yun Hyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.263-275
    • /
    • 2016
  • Objective: This paper introduces the regulatory oversight approaches and issues to consider in the course of safety culture oversight model development in the nuclear field. Common understanding on regulatory oversight and present practices of international communities are briefly reviewed. The nuclear safety culture oversight model of Korea is explained focusing on the development of safety culture definition and components, and their basic meanings. Oversight components are identified to represent the multiple human and organizational elements which can affect and reinforce elements of defense in depth system for nuclear safety. Result of validation study on safety culture components is briefly introduced too. Finally, the results of the application of the model are presented to show its effectiveness and feasibility. Background: The oversight of nuclear licensee's safety culture has been an important regulatory issue in the international community of nuclear safety regulation. Concurrent with the significant events that started to occur in the early 2000s and that had implications about safety culture of the operating organizations, it has been natural for regulators to pay attention to appropriate methods and even philosophy for intervening the licensee's safety culture. Although safety culture has been emphasized for last 30 years as a prerequisite to ensure high level of nuclear safety, it has not been of regulatory scope and has a unique dilemma between external oversight and the voluntary nature of culture. Safety culture oversight is a new regulatory challenge that needs to be approached taking into consideration of the uncontrollable aspects of cultural changes and the impacts on licensee's safety culture. Although researchers and industrial practitioners still struggle with measuring, evaluating, managing and changing safety culture, it was recognized that efforts to observe and influence licensees' safety culture should not be delayed. Method: Safety culture components which regulatory oversight will have to focus on are developed by benchmarking the concept of physical barriers and introducing the defense in depth philosophy into organizational system. Therefore, this paper begins with review of international regulatory oversight approaches and issues associated with the regulatory oversight of safety culture, followed by the development of oversight model. The validity of the model was verified by statistical analysis with the survey result obtained from survey administration to NPP employees in Korea. The developed safety culture oversight model and components were used in the "safety culture inspection" activities of the Korean regulatory body. Results: The developed safety culture model was confirmed to be valid in terms of content, construct and criterion validity. And the actual applicability in the nuclear operating organization was verified after series of pilot "safety culture inspection" activities. Conclusion: The application of the nuclear safety culture oversight model to operating organization of NPPs showed promising results for regulatory tools required for the organizations to improve their safety culture. Application: The developed oversight model and components might be used in the inspection activities and regulatory oversight of NPP operating organization's safety culture.

Optimization of preventive maintenance of nuclear safety-class DCS based on reliability modeling

  • Peng, Hao;Wang, Yuanbing;Zhang, Xu;Hu, Qingren;Xu, Biao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3595-3603
    • /
    • 2022
  • Nuclear safety-class DCS is used for nuclear reactor protection function, which is one of the key facilities to ensure nuclear power plant safety, the maintenance for DCS to keep system in a high reliability is significant. In this paper, Nuclear safety-class DCS system developed by the Nuclear Power Institute of China is investigated, the model of reliability estimation considering nuclear power plant emergency trip control process is carried out using Markov transfer process. According to the System-Subgroup-Module hierarchical iteration calculation, the evolution curve of failure probability is established, and the preventive maintenance optimization strategy is constructed combining reliability numerical calculation and periodic overhaul interval of nuclear power plant, which could provide a quantitative basis for the maintenance decision of DCS system.

Experimental measurement of stiffness coefficient of high-temperature graphite pebble fuel elements in helium at high temperatures

  • Minghao Si;Nan Gui;Yanfei Sun;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1679-1686
    • /
    • 2024
  • Graphite material plays an important role in nuclear reactors especially the high-temperature gas-cooled reactors (HTGRs) by its outstanding comprehensive nuclear properties. The structural integrity of graphite pebble fuel elements is the first barrier to core safety under any circumstances. The correct knowledge of the stiffness coefficient of the graphite pebble fuel element inside the reactor's core is significant to ensure the valid design and inherent safety. In this research, a vertical extrusion device was set up to measure the stiffness coefficient of the graphite pebble fuel element by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. The stiffness coefficient equations of graphite pebble fuel elements at different temperatures are given (in a helium atmosphere). The result first provides the data on the high-temperature stiffness coefficient of pebbles in helium gas. The result will be helpful for the engineering safety analysis of pebble-bed nuclear reactors.