• Title/Summary/Keyword: Nuclear Reprogramming

Search Result 60, Processing Time 0.024 seconds

Optimization of Electrofusion Condition for the Production of Korean Cattle Somatic Cell Nuclear Transfer Embryos

  • Kim, Se-Woong;Kim, Dae-Hwan;Jung, Yeon-Gil;Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • This study was designed to determine the effect of electric field strength, duration and fusion buffer in fusion parameters on the rate of membrane fusion between the somatic cell and cytoplast for Korean cattle (HanWoo) somatic cell nuclear transfer (SCNT) procedure. Following electrofusion, effect of 5 or $10\;{\mu}M$ $Ca^{2+}$-ionophore of activation treatment on subsequent development was also evaluated. Cell fusion rates were significantly increased from 23.1% at 20 V/mm to 59.7% at 26 V/mm and 52.9% at 27 V/mm (p<0.05). Due to higher cytoplasmic membrane rupture or cellular lysis, overall efficiency was decreased when the strength was increased to 30 V/mm (18.5%) and 40 V/mm (6.3%) and the fusion rate was also decreased when the strength was at 25 V/mm or below. The optimal duration of electric stimulation was significantly higher in $25\;{\mu}s$ than 20 and $30\;{\mu}s$ (18.5% versus 9.3% and 6.3%, respectively, p<0.05). Two nonelectrolyte fusion buffers, Zimmermann's (0.28 M sucrose) and 0.28 M mannitol solution for cell fusion, were used for donor cell and ooplast fusion and the fusion rate was significantly higher in Zimmermann's cell fusion buffer than in 0.28 M mannitol (91.1% versus 48.4%, respectively, p<0.05). The cleavage and blastocyst formation rates of SCNT bovine embryos activated by $5\;{\mu}M$ $Ca^{2+}$-ionophore was significantly higher than the rates of the embryos activated with $10\;{\mu}M$ of $Ca^{2+}$-ionophore (70.0% versus 42.9% and 22.5% versus 14.3%, respectively; p<0.05). This result is the reverse to that of parthenotes which shows significantly higher cleavage and blastocyst rates in $10\;{\mu}M$ $Ca^{2+}$-ionophore than $5\;{\mu}M$ counterpart (65.6% versus 40.3% and 19.5% versus 9.7%, respectively; p<0.05). In conclusion, SCNT couplet fusion by single pulse of 26 V/mm for $25\;{\mu}s$ in Zimmermann's fusion buffer followed by artificial activation with $5\;{\mu}M$ $Ca^{2+}$-ionophore are suggested as optimal fusion and activation methods in Korean cattle SCNT protocol.

Cell Cycle and Apoptosis of Bovine Fetal Fibroblast Cells following Different Activation Treatments

  • Bhak, Jong-Sik;Choe, Sang-yong
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.37-37
    • /
    • 2002
  • The success of embryo cloning depends on numerous factors; interaction between recipient ooplasm and donor nucleus, nuclear reprogramming, oocyte activation, and donor cell cycle and type. In this study, the cell cycle and apoptosis of bovine fetal fibroblast as a donor cell for embryo cloning were evaluated following different activation treatments. (omitted)

  • PDF

Alleviation of Senescence via ATM Inhibition in Accelerated Aging Models

  • Kuk, Myeong Uk;Kim, Jae Won;Lee, Young-Sam;Cho, Kyung A;Park, Joon Tae;Park, Sang Chul
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.210-217
    • /
    • 2019
  • The maintenance of mitochondrial function is closely linked to the control of senescence. In our previous study, we uncovered a novel mechanism in which senescence amelioration in normal aging cells is mediated by the recovered mitochondrial function upon Ataxia telangiectasia mutated (ATM) inhibition. However, it remains elusive whether this mechanism is also applicable to senescence amelioration in accelerated aging cells. In this study, we examined the role of ATM inhibition on mitochondrial function in Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) cells. We found that ATM inhibition induced mitochondrial functional recovery accompanied by metabolic reprogramming, which has been known to be a prerequisite for senescence alleviation in normal aging cells. Indeed, the induced mitochondrial metabolic reprogramming was coupled with senescence amelioration in accelerated aging cells. Furthermore, the therapeutic effect via ATM inhibition was observed in HGPS as evidenced by reduced progerin accumulation with concomitant decrease of abnormal nuclear morphology. Taken together, our data indicate that the mitochondrial functional recovery by ATM inhibition might represent a promising strategy to ameliorate the accelerated aging phenotypes and to treat age-related disease.

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

Methylation Status of H19 Gene in Embryos Produced by Nuclear Transfer of Spermatogonial Stem Cells in Pig

  • Lee, Hyun-Seung;Lee, Sung-Ho;Gupta, Mukesh Kumar;Uhm, Sang-Jun;Lee, Hoon-Taek
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The faulty regulation of imprinting gene lead to the abnormal development of reconstructed embryo after nuclear transfer. However, the correlation between the imprinting status of donor cell and preimplantation stage of embryo development is not yet clear. In this study, to determine this correlation, we used the porcine spermatogonial stem cell (pSSC) and fetal fibroblast (pFF) as donor cells. As the results, the isolated cells with laminin matrix selection strongly expressed the GFR ${\alpha}$-1 and PLZF genes of SSCs specific markers. The pSSCs were maintained to 12 passages and positive for the pluripotent marker including OCT4, SSEA1 and NANOG. The methylation analysis of H19 DMR of pSSCs revealed that the zinc finger protein binding sites CTCF3 of H19 DMRs displayed an androgenic imprinting pattern (92.7%). Also, to investigate the reprogramming potential of pSSCs as donor cell, we compared the development rate and methylation status of H19 gene between the reconstructed embryos from pFF and pSSC. This result showed no significant differences of the development rate between the pFFs ($11.2{\pm}0.8%$) and SSCs ($13.3{\pm}1.1%$). However, interestingly, while the CTCF3 methylation status of pFF-NT blastocyst was decreased (36.3%), and the CTCF3 methylation status of pSSC-NT blastocyst was maintained. Therefore, this result suggested that the genomic imprinting status of pSSCs is more effective than that of normal somatic cells for the normal development because the maintenance of imprinting pattern is very important in early embryo stage.

Improved Preimplantation Development of Cloned Porcine Embryos through Supplementation of Histone Deacetylase Inhibitor MS-275

  • Fang, Xun;Qamar, Ahmad Yar;Shin, Sang Tae;Cho, Jongki
    • Journal of Veterinary Clinics
    • /
    • v.36 no.5
    • /
    • pp.253-258
    • /
    • 2019
  • The objective of this study was to analyse the effects of MS-275 (Class I and II histone deacetylase inhibitor) supplementation on the development of porcine in-vitro somatic nuclear transfer embryo production. During in-vitro development, early embryos were exposed to different concentrations of MS-275 (0, $5{\mu}M$, $10{\mu}M$, and $20{\mu}M$). In in-vitro culture supplemented group, the blastocyst development rate was significantly enhanced by $10{\mu}M$ concentration than other groups (24.0% vs. 19.3%, 21.8%, 11.5%; P < 0.05). Additionally, the 6 h supplementation group, significantly improved the blastocysts production than 24 h, 48 h and control groups (26.1% vs. 17.0%, 15.2%, 2.8%; P < 0.05). Following supplementation with optimal concentrations and time ($10{\mu}M$-6 h group), the blastocyst production was significantly higher than control (25.7% vs 15.8%; P < 0.05). The optimal concentrations of MS-275 significantly enhanced the percentages of ICM:TE than control (43.6% vs. 38.4%; P < 0.05) accompanied with significantly higher expression levels of reprogramming related genes (POU5F1, Naong, and SOX2). In conclusion, the optimal concentrations of $10{\mu}M$ MS-275 and 6 h supplementation during in-vitro culture can significantly improve the quality of porcine in-vitro somatic nuclear transfer embryos through histone acetylation and epigenetic modification. Increasing the efficiency of clonal animal production will greatly promote the development of animal disease models and xenotransplantation.

Follicular Growth and Oocyte Maturation : A 2003 Perspective

  • Sato, Eimei
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.3-6
    • /
    • 2003
  • The birth of the clone animals is influencing the frontier of research of animal biotechnology. It has effects on research of animal biotechnology itself by necessitating setting of new research subjects, modifications of the strategy of ongoing research projects, and challenges to schemes formerly considered impossible. In my talk, such topics including mass production of fertile ova and oocyte maturation will be discussed. (1) Oocytes are needed for the production of a clone by nuclear transplantation. Mitochondrial DNA inherited via the oocyte are involved also in the morphogenesis. Therefore, oocytes from the same animal must be used as recipients to produce genuine clones by nuclear transplantation. Experimenting on the assumption that selective oogenesis can be avoided, and apoptosis of oocytes can be prevented, by using ovarian angiogenic factos will be introduced. (2) It is important to clarify the factors of oocytes involving in reprogramming of somatic cells. Such factors are thought to be expressed in oocytes during oogenesis and oocyte maturation. Therefore, molecular mechanisms of oogenesis and oocyte maturation must be clarified extensively. Topics in this field including our recent advances will be discussed. (중략)

  • PDF

Somatic Cell Nuclear Transfer in Rodents, the Little Big Animals

  • Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.27 no.4
    • /
    • pp.205-209
    • /
    • 2012
  • Transgenic rats and mice are useful experimental animal models for medical research including human disease model studies. Somatic cell nuclear transfer (SCNT) technology is successfully applied in most mammalian species including cattle, sheep, pig and mouse. SCNT is also considered to increase the efficacy of transgenic/knockout mouse and rat production. However, in the area of reproductive biotechnology, the rodent model is inadequate because of technical obstacles in manipulating the oocytes including intracytoplasmic sperm injection and SCNT. In particular, success of rat SCNT is very limited so far. In this review, the history of rodent cloning is described.

Assessements of Apoptosis in Bovine Embryos Reconstructed with Fetal Fibroblast

  • Lee, S. L.;Park, G.;S. Y. Choe
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.136-136
    • /
    • 2003
  • Mainly due to deficiencies in nuclear reprogramming, gene expression and DNA fragmentation, which result in early and late embryonic losses, the overall success rate achieved by cloning techniques to date is low. This present study compared the incidences of DNA fragmentation during development of IVF, parthenotes (PT), nuclear transfer (NT) and transgenic (TG) embryos. Terminal deoxynucleotidyl transferase (TdT) nick-end labelling (TUNEL) with propidium iodide counter staining was used for determination of DNA fragmentation and total number, respectively. TG and NT donor cells were fetal fibroblasts with or without transfection with EGFP, and cultured in DMEM+15% FCS until confluent, for 5 days. At 19 h post-maturation (hpm), enucleated oocytes were reconstructed with donor cells and activated at 24 hpm with the combinations of ionomycin (5 M, 5 min) and cyclo-heximide (10 g/ml, 5 h) after electric fusion by a single DC pulse (1.6 KV/cm, 60 sec). Parthenotes were produced by the same activation protocol at 24 hpm. (중략)

  • PDF

Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos

  • Kim, So-Young;Kim, Tae-Suk;Park, Sang-Hoon;Lee, Mi-Ran;Eun, Hye-Ju;Baek, Sang-Ki;Ko, Yeoung-Gyu;Kim, Sung-Woo;Seong, Hwan-Hoo;Campbell, Keith H.S.;Lee, Joon-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.266-277
    • /
    • 2014
  • Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with $4{\mu}g/mL$ of digitonin for 2 min at $4^{\circ}C$ in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at $18^{\circ}C$ was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.