• Title/Summary/Keyword: Nuclear Reactions

Search Result 283, Processing Time 0.027 seconds

A novel 11CN-labeling approach to aryl compounds and peptides using palladium complex

  • Kim, Hee-Kwon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.113-115
    • /
    • 2017
  • Since the nitrile group is commonly found in natural products and bioactive molecules, many scientists' interest has been focused on the usage of nitrile group. Novel reactions for $^{11}C-labelling$ using nitrile group have been developed, and novel preparation protocols of biomolecules labeled with $^{11}C$ have been studied. In this highlight review, recent researches for the novel labeling reactions using nitrile group are illustrated.

An Endogenous Proteinacious Inhibitor for S-Adenosyl-L-methionine-dependent Transmethylation Reactions; Identification of S-Adenosylhomocysteine as an Integral Part

  • Seo, Dong-Wan;Han, Jeung-Whan;Hong, Sung-Youl;Paik , Woon-Ki;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.237-242
    • /
    • 1999
  • A proteinacious inhibitor with a molecular weight of 1,600 Da which inhibits S-adenosyl-L-methionine-dependent transmethylation reactions was purified from porcine liver to homogeneity by procedures including boiling, Sephadex G-25 column chromatography and repeated HPLC. Employing both Nuclear Magnetic Resonance (NMR) and Fast Atom Bombardment-Mass (FAB-Mass) spectroscopy, S-adenosylhomocysteine was conclusively identified as an integral part of the inhibitor. The purified S-adenosylhomocysteine was competitive with S-adenosyl-L-methionine with Ki value of $6.3{\times}10^{-6}$ M towards protein methylase II.

  • PDF

The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides

  • Schreinemachers, Christian;Leinders, Gregory;Modolo, Giuseppe;Verwerft, Marc;Binnemans, Koen;Cardinaels, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1013-1021
    • /
    • 2020
  • A combination of simultaneous thermal analysis, evolved gas analysis and non-ambient XRD techniques was used to characterise and investigate the conversion reactions of ammonium uranates into uranium oxides. Two solid phases of the ternary system NH3 - UO3 - H2O were synthesised under specified conditions. Microspheres prepared by the sol-gel method via internal gelation were identified as 3UO3·2NH3·4H2O, whereas the product of a typical ammonium diuranate precipitation reaction was associated to the composition 3UO3·NH3·5H2O. The thermal decomposition profile of both compounds in air feature distinct reaction steps towards the conversion to U3O8, owing to the successive release of water and ammonia molecules. Both compounds are converted into α-U3O8 above 550 ℃, but the crystallographic transition occurs differently. In compound 3UO3·NH3·5H2O (ADU) the transformation occurs via the crystalline β-UO3 phase, whereas in compound 3UO3·2NH3·4H2O (microspheres) an amorphous UO3 intermediate was observed. The new insights obtained on these uranate systems improve the information base for designing and synthesising minor actinide-containing target materials in future applications.

Study on producing radioisotopes based on fission or radiative capture method in a high flux reactor

  • Wei Xu;Jian Li;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3585-3593
    • /
    • 2024
  • Radioisotopes tend to play important roles in many fields, such as industry, healthcare, agriculture, aerospace, etc. Radioisotope production is mainly through accelerators or research reactors, and high flux research reactor is one of the most effective approaches for radioisotope production. The physical basis of preparing radioisotope relies on nuclear reactions occurring in the reactor core, which includes fission, (n,γ), (n,α), and (n,p) reaction, etc. Among them, fission and (n,γ) reaction are most important in the nuclear reactor. For example, the 99Mo could be generated by uranium fission and extracting from the fission products, or through the radiative capture reaction from enriched 98Mo. As for the fission method, the irradiation target is gradually transitioning from high enriched uranium (HEU) target to low enriched uranium (LEU) target due to the requirement of non-proliferation. In this paper, studies on the impacts of different fission targets on radioisotope productions are conducted. Moreover, an optimized study on the radiative capture method is performed to improve the production efficiency. It is concluded that it is advantageous to use radiative capture method to generate radioisotopes in high flux reactor, which helps to improve the specific activity with environmental friendliness.

A feasibility study on photo-production of 99mTc with the nuclear resonance fluorescence

  • Ju, Kwangho;Lee, Jiyoung;ur Rehman, Haseeb;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.176-189
    • /
    • 2019
  • This paper presents a feasibility study for producing the medical isotope $^{99m}Tc$ using the hazardous and currently wasted radioisotope $^{99}Tc$. This can be achieved with the nuclear resonance fluorescence (NRF) phenomenon, which has recently been made applicable due to high-intensity laser Compton scattering (LCS) photons. In this work, 21 NRF energy states of $^{99}Tc$ have been identified as potential contributors to the photo-production of $^{99m}Tc$ and their NRF cross-sections are evaluated by using the single particle estimate model and the ENSDF data library. The evaluated cross sections are scaled using known measurement data for improved accuracy. The maximum LCS photon energy is adjusted in a way to cover all the significant excited states that may contribute to $^{99m}Tc$ generation. An energy recovery LINAC system is considered as the LCS photon source and the LCS gamma spectrum is optimized by adjusting the electron energy to maximize $^{99m}Tc$ photo-production. The NRF reaction rate for $^{99m}Tc$ is first optimized without considering the photon attenuations such as photo-atomic interactions and self-shielding due to the NRF resonance itself. The change in energy spectrum and intensity due to the photo-atomic reactions has been quantified using the MCNP6 code and then the NRF self-shielding effect was considered to obtain the spectrums that include all the attenuation factors. Simulations show that when a $^{99}Tc$ target is irradiated at an intensity of the order $10^{17}{\gamma}/s$ for 30 h, 2.01 Ci of $^{99m}Tc$ can be produced.

BOTANI: High-fidelity multiphysics model for boron chemistry in CRUD deposits

  • Seo, Seungjin;Park, Byunggi;Kim, Sung Joong;Shin, Ho Cheol;Lee, Seo Jeong;Lee, Minho;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1676-1685
    • /
    • 2021
  • We develop a new high-fidelity multiphysics model to simulate boron chemistry in the porous Chalk River Unidentified Deposit (CRUD) deposits. Heat transfer, capillary flow, solute transport, and chemical reactions are fully coupled. The evaporation of coolant in the deposits is included in governing equations modified by the volume-averaged assumption of wick boiling. The axial offset anomaly (AOA) of the Seabrook nuclear power plant is simulated. The new model reasonably predicts the distributions of temperature, pressure, velocity, volumetric boiling heat density, and chemical concentrations. In the thicker CRUD regions, 60% of the total heat is removed by evaporative heat transfer, causing boron species accumulation. The new model successfully shows the quantitative effect of coolant evaporation on the local distributions of boron. The total amount of boron in the CRUD layer increases by a factor of 1.21 when an evaporation-driven increase of soluble and precipitated boron concentrations is reflected. In addition, the concentrations of B(OH)3 and LiBO2 are estimated according to various conditions such as different CRUD thickness and porosity. At the end of the cycle in the AOA case, the total mass of boron incorporated in CRUD deposits of a reference single fuel rod is estimated to be about 0.5 mg.

SIGNIFICANCE OF ACTINIDE CHEMISTRY FOR THE LONG-TERM SAFETY OF WASTE DISPOSAL

  • Kim, Jae-Il
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.459-482
    • /
    • 2006
  • A geochemical approach to the long-term safety of waste disposal is discussed in connection with the significance of actinides, which shall deliver the major radioactivity inventory subsequent to the relatively short-term decay of fission products. Every power reactor generates transuranic (TRU) elements: plutonium and minor actinides (Np, Am, Cm), which consist chiefly of long-lived nuclides emitting alpha radiation. The amount of TRU actinides generated in a fuel life period is found to be relatively small (about 1 wt% or less in spent fuel) but their radioactivity persists many hundred thousands years. Geological confinement of waste containing TRU actinides demands, as a result, fundamental knowledge on the geochemical behavior of actinides in the repository environment for a long period of time. Appraisal of the scientific progress in this subject area is the main objective of the present paper. Following the introductory discussion on natural radioactivities, the nuclear fuel cycle is briefly brought up with reference to actinide generation and waste disposal. As the long-term disposal safety concerns inevitably with actinides, the significance of the aquatic actinide chemistry is summarized in two parts: the fundamental properties relevant to their aquatic behavior and the geochemical reactions in nanoscopic scale. The constrained space of writing allows discussion on some examples only, for which topics of the primary concern are selected, e.g. apparent solubility and colloid generation, colloid-facilitated migration, notable speciation of such processes, etc. Discussion is summed up to end with how to make a geochemical approach available for the long-term disposal safety of nuclear waste or for the performance assessment (PA) as known generally.

A Lattice-Based Monte Carlo Evaluation of Canada Deuterium Uranium-6 Safety Parameters

  • Kim, Yonghee;Hartanto, Donny;Kim, Woosong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.642-649
    • /
    • 2016
  • Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANada Deuterium Uranium (CANDU-6) reactor have been evaluated using the Monte Carlo method. For accurate analysis of the parameters, the Doppler broadening rejection correction scheme was implemented in the MCNPX code to account for the thermal motion of the heavy uranium-238 nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted using MCNPX. The FTC value is evaluated for several burnup points including the mid-burnup representing a near-equilibrium core. The Doppler effect has been evaluated using several cross-section libraries such as ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1.1, and JENDL-4.0. The PCR value is also evaluated at mid-burnup conditions to characterize the safety features of an equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, we considered a huge number of neutron histories in this work and the standard deviation of the k-infinity values is only 0.5-1 pcm.

The use of Thermodynamics and Phase Equilibria for Prediction of the Behavior of High Temperature Corrosion of Alloy 617 in Impure Helium Environment

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Kim, Sung-Woo;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.164-170
    • /
    • 2010
  • Thermodynamic consideration was performed for Alloy 617 exposed to an impure helium ($H_2$ 20pa, $H_2O$ 0.5pa, $CH_4$ 2pa and CO 5pa) at $950^{\circ}C$. Oxidation power was decreased in the order Al > Ti > Si > Cr > Mn. Decarburization and carburization reactions were available leading to carbon activity decrease and increase, respectively, depending on carbon and Cr activities. The thermodynamic prediction was compared with the experimental results obtained in similar conditions (($H_2$ 20pa, $H_2O$ 0.05pa, $CH_4$ 5pa and CO 2pa) and $950^{\circ}C$) by others for Alloy 617. The driving force for oxidation of Al, Ti and Si is very large to be oxidized at a given impure helium and the environment is actually carburizing towards the structural alloy, which is consistent with this work.

A Regression Program COVAFIT Accounting for Variance-Covariances in Experimental Nuclear Data (실험 핵자료의 분산-공분산을 고려한 회귀분석 프로그램 COVAFIT)

  • Oh, Soo-Youl;Jonghwa Chang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.72-78
    • /
    • 1996
  • A computer program COVAFIT has been developed and applied to the evaluation of experimental cross sections for MeV energy incident particles. The program utilizes weighted least-square linear regression method with high-order polynomials derived in this study. Meeting the growing demand for the treatment of covariances in nuclear data, it deals with the variance and covariance data provided along with experimental cross sections and yields those for the evaluated ones. The evaluated results on two sets of neutron total cross section of oxygen and three sets of proton cross section for $C^{11}$ production reactions confirm the methodology formulated in and the applicability of the program.

  • PDF