• Title/Summary/Keyword: Nuclear Propulsion

Search Result 27, Processing Time 0.02 seconds

State of the Art for Space Propulsion Employing Nuclear Power (핵동력 우주추진 기술개발 동향)

  • Hong Yeong Park;Yun Hyeong Kang;Jeong Soo Kim;Soo Seok Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.86-100
    • /
    • 2022
  • In this paper, the concept and characteristics of the nuclear propulsion system were introduced and the state of the art for the nuclear-powered space propulsion in abroad were summarized. Since uranium used in nuclear propulsion has a very high energy density per unit mass, it has exceptional specific impulse performance compared to the existing chemical propulsion method and can reduce the amount of fuel loaded, thereby having advantage for long-distance exploration. For this reason, advanced countries in space development are recently spurring to the research of nuclear propulsion technology, and it is judged that the development of a propulsion engine using nuclear power is absolutely necessary in order to gain an competitive edge on the space development.

Method's to introduce ROKN Nuclear Propulsion Submarines (한국형 원자력 추진 잠수함 도입방안)

  • Jang, Jun-Seop
    • Strategy21
    • /
    • s.42
    • /
    • pp.5-52
    • /
    • 2017
  • Debates about introducing nuclear submarines have been a main issue in Korea. The highest officials and the government has started to think seriously about the issue. Yet there were no certain decision to this issue or any agreements with US but it is still necessary to review about introducing nuclear submarines, the technologies and about the business. The reason for such issues are the highest officials of Korea to build nuclear submarine, nK's nuclear development and SLBM launching. ROKN's nuclear submarine's necessity will be to attack(capacity to revenge), defend(anti-SSBN Operation) and to respond against neighboring nation's threat(Russia, Japan, China). Among these nations, US, Russia (Soviet Union), Britain, France had built their submarines in a short term of time due to their industrial foundation regarding with nuclear propulsion submarines. However China and India have started their business without their industrial foundation prepared and took a long time to build their submarines. Current technology level of Korea have reached almost up to US, Russia, Britain and France when they first built their nuclear propulsion submarines since we have almost completed the business for the Changbogo-I,II and almost up to complete building the Changbogo-III which Korea have self designed/developed. Furthermore Korea have reached the level where we can self design large nuclear reactors and the integrated SMART reactor which we can call ourselves a nation with worldwide technologies. If introducing the nuclear submarine to the Korea gets decided, first of all we would have to review the technological problems and also introduce the foreign technologies when needed. The methods for the introduction will be developments after loans from the foreign, productions with technological cooperations, and individual production. The most significant thing will be that changes are continuous and new instances are keep showing up so that it is important to only have a simple reference to a current instances and have a review on every methods with many possibilities. Also developing all of the technologies for the nuclear propulsion submarines may be not possible and give financial damages so there may be a need to partially introduce foreign technologies. For the introduction of nuclear propulsion submarines, there must be a resolution of the international regulations together with the international/domestics resistances and the technological problems to work out for. Also there may be problem for the requirement fees to solve for and other tough problems to solve for. However nuclear submarines are powerful weapon system to risk everything above. This is an international/domestically a serious agenda. Therefore rather than having debates based on false facts, there must be a need to have an investigations and debates regarding the nation's benefits and national security.

Neutron clustering in Monte Carlo iterated-source calculations

  • Sutton, Thomas M.;Mittal, Anudha
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1211-1218
    • /
    • 2017
  • Monte Carlo neutron transport codes generally use the method of successive generations to converge the fission source distribution to-and then maintain it at-the fundamental mode. Recently, a phenomenon called "clustering" has been noted, which produces fission distributions that are very far from the fundamental mode. In this study, a mathematical model of clustering in Monte Carlo has been developed. The model draws on previous work for continuous-time birth-death processes, as well as methods from the field of population genetics.

INNOVATIVE CONCEPT FOR AN ULTRA-SMALL NUCLEAR THERMAL ROCKET UTILIZING A NEW MODERATED REACTOR

  • NAM, SEUNG HYUN;VENNERI, PAOLO;KIM, YONGHEE;LEE, JEONG IK;CHANG, SOON HEUNG;JEONG, YONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.678-699
    • /
    • 2015
  • Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.

The importance of nuclear energy for the expansion of world's energy demand

  • Guk, Erdogan;Kalkan, Naci
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.71-80
    • /
    • 2015
  • This paper describes nuclear energy technologies for the solution of long term energy problem with better reliability. A short overview about nuclear energy applications are explained with a basic analysis of energy. Furthermore, industrial application, space application of nuclear systems and ship propulsion in nuclear energy application are demonstrated in more detail. This report also includes some examples of the experienced nuclear power plant to identify energy production. The general purpose of the article is to understand how efficiently nuclear systems generates energy, and solve the world's increasing energy demand in our century.

Technical and Policy Lessons for the Domestic Future Nuclear-powered Submarine learned from the U.S. Naval Nuclear Propulsion Program (미해군 원자력추진 프로그램으로부터 얻은 미래 원자력추진 잠수함 확보를 위한 기술 및 정책적 교훈)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.142-149
    • /
    • 2019
  • In the early 2000s, the Korean government first attempted to acquire nuclear-powered submarines as strategic assets. Acquisition of nuclear-powered submarines must overcome the challenges of the initial costs and operating costs of trillions of US dollars per ship, must be agreed to by the international community (including neighboring countries) and in a national consensus, and must have an established technical infrastructure (including manpower). The US navy has been working with governments that want to acquire nuclear propulsion warships since the 1950s, and in 1982, they enacted an executive order called the United States Naval Nuclear Propulsion Program to consolidate efforts and prepare for the future, which sets out the organizational structure, authority, and responsibilities of US governmental management, and integrates national efforts. This paper is to gain valuable wisdom from the U.S. Naval Nuclear Propulsion Program by analyzing all of its histories and contributions, thereby providing valuable lessons for a future program in Korea. It might not be possible to follow the U.S.A. one-on-one because of the scale of national and military forces, but at least we can avoid time and effort spent on trial and error.

A Study on the Submarine Air Independent Propulsion System: Focused on Submarines Currently in Operation (잠수함 공기불요 추진체계에 대한 연구: 현재 운용 중인 잠수함을 중심으로)

  • Jang, Junseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.418-425
    • /
    • 2021
  • Submarines are weapons systems that have been proven to be useful in battle since World War I and have continued to improve the efficiency of propulsion systems in order to be used efficiently on the battlefield. In particular, countries that unable to utilize nuclear propulsion systems make efforts to increase the efficiency of Air Independent Propulsion systems, and typical examples are fuel cells, Stirling engines and MESMA. It is also expected that the development of new propulsion systems such as hydrogen-reformer fuel cells, metal-air fuel cell and direct combustion propulsion systems will continue, so the characteristics of these will be examined and the performance based on the published data be checked in this thesis.

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

  • Kelly, Daniel J. III;Kelly, Ann E.;Aviles, Brian N.;Godfrey, Andrew T.;Salko, Robert K.;Collins, Benjamin S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1326-1338
    • /
    • 2017
  • The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of $0.99994{\pm}6.8E-6$ (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

Supercritical CO2-cooled fast reactor and cold shutdown system for ship propulsion

  • Kwangho Ju;Jaehyun Ryu;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1022-1028
    • /
    • 2024
  • A neutronics study of a supercritical CO2-cooled fast reactor core for nuclear propulsion has been performed in this work. The thermal power of the reactor core is 30 MWth and a ceramic UO2 fuel can be used to achieve a 20-year lifetime without refueling. In order to make a compact core with inherent safety features, the drum-type reactivity control system and folding-type shutdown system are adopted. In addition, we suggest a cold shutdown system using gadolinium as a spectral shift absorber (SSA) against flooding. Although there is a penalty of U-235 enrichment for the core embedded with the cold shutdown system, it effectively mitigates the increment of reactivity at the flooding of seawater. In this study, the neutronics analyses have been performed by using the continuous energy Monte Carlo Serpent 2 code with the evaluated nuclear data file ENDF/B-VII.1 Library. The supercritical CO2-cooled fast reactor core is characterized in view of important safety parameters such as the reactivity worth of reactivity control systems, fuel temperature coefficient (FTC), coolant temperature coefficient (CTC), and coolant temperature-density coefficient (CTDC). We can say that the suggested core has inherent safety features and enough flexibility for load-following operation.