• 제목/요약/키워드: Nuclear Power Plant Software

검색결과 124건 처리시간 0.027초

증기터빈$\cdot$발전기축계의 지진응답해석(제 1 보, 로터$\cdot$베어링시스템만을 고려한 경우) (Seismic Response Analysis of Steam Turbine-Generator Rotor System(1st Report, In case of rotor-bearing system only))

  • 양보석;김용한
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.554-564
    • /
    • 1999
  • This paper presents the analytical method to evaluate the seismic responses on steam turbine-generator rotor system. Deterministic analytical methods, such as response spectrum approach, modal superposition method and direct integration method, are used to calculate the seismic response. The computer software is also developed based on the methods then can be applied to estimate the seismic safety of turbine-generator rotor system for power plants. Numerical example of a steam turbine-generator rotor system of 1007MW nuclear power plant is presented. The aseismatic performance are checked by comparing maximum seismic deflection at bearing positions with bearing clearance.

  • PDF

EMD를 이용한 초음파 비파괴 평가용 3차원 영상처리 소프트웨어 개발 (Development of 3D Image Processing Software using EMD for Ultrasonic NDE)

  • 남명우;이영석;양옥렬
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1569-1573
    • /
    • 2008
  • 본 논문은 핵발전소 증기발생기의 초음파 비파괴 검사용 프로그램 개발에 관한 것이다. 개발된 프로그램은 A, B, C, D-스캔과 같은 고전적인 해석방법뿐만 아니라 3차원 영상처리 기법을 이용하여 증기발생기 내부에 발생한 결함을 해석하고 검출할 수 있다. 결함의 3차원 영상은 핵발전소의 파이프라인으로부터 얻어진 1차원 초음파 데이터를 EMD(Empirical Mode Decomposition)로 분석해 결함의 위치를 구하고 voxel을 이용하여 구현하였다. 얻어진 3차원 영상은 2차원 해석방법을 사용하지 않더라도 결함의 위치, 형태, 크기 등과 같은 유용한 정보를 얻는데 용이하다. 개발된 프로그램은 이미 결함의 위치 및 모양, 크기 등을 알고 있는 시편의 측정에 사용하여 프로그램의 정확성을 검증하였고, 3차원 영상으로 결함의 입체적 모양을 구현하였다.

단순화된 피동 원자로건물 냉각계통 내 자연순환에 관한 수치적 연구 (Numerical Investigation on Natural Circulation in a Simplified Passive Containment Cooling System)

  • 서정수
    • 한국안전학회지
    • /
    • 제33권3호
    • /
    • pp.92-98
    • /
    • 2018
  • The flow of cooling water in a passive containment cooling system (PCCS), used to remove heat released in design basis accidents from a concrete containment of light water nuclear power plant, was conducted in order to investigate the thermo-fluid equilibrium among many parallel tubes of PCCS. Numerical simulations of the subcooled boiling flow within a coolant loop of a PCCS, which will be installed in innovative pressurized-water reactor (PWR), were conducted using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. As the first step, the simplified geometry of PCCS with 36 tubes was modeled in order to reduce computational resource. Even and uneven thermal loading conditions were applied at the outer walls of parallel tubes for the simulation of the coolant flow in the PCCS at the initial phase of accident. It was observed that the natural circulation maintained in single-phase for all even and uneven thermal loading cases. For uneven thermal loading cases, coolant velocity in each tube were increased according to the applied heat flux. However, the flows were mixed well in the header and natural circulation of the whole cooling loop was not affected by uneven thermal loading significantly.

원전 주증기배관 웰더렛 용접부 위상배열초음파검사 적용연구 (A Study on the Application of Phased Array Ultrasonic Testing to Main Steam Line in Nuclear Power Plants)

  • 이승표;김진회
    • 한국압력기기공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.40-47
    • /
    • 2011
  • KSNPs(Korea Standard Nuclear Power Plant) have been applied the break exclusion criteria to the high energy lines passing through containment penetration area to ensure that piping failures would not cause the loss of containment isolation function, and to reduce the resulting dynamic effects. Systems with the criteria are the Main Steam system, Feed Water system, Steam Generator Blowdown system, and Chemical & Volume Control system. In accordance with FSAR(Final Safety Analysis Report), a 100% volumetric examination by augmented in-service inspection of all pipe welds appled the break exclusion criteria is required for the break exclusion application piping. However, it is difficult to fully satisfy the requirements of inspection because 12", 8" and 6" weldolet weldments of Main Steam pipe line have complex structural shapes. To resolve the difficulty on the application of conventional UT(Ultrasonic Testing) technique, realistic mock-ups and UT calibration blocks were made. Simulations of conventional UT were performed utilizing CIVA, a commercial NDE(Nondestructive Examination) simulation software. Phased array UT experiments were performed through mock-up including artificial notch type flaws. A phased array UT technique is finally developed to improve the reliability of ultrasonic test at main steam line pipe to 12", 8" and 6" branch connection weld.

웨스팅하우스형 원자력발전소 가압기 방출 탱크의 실시간 시뮬레이션을 위한 전문모델 개발 (Development of a Dedicated Model for a Real-Time Simulation of the Pressurizer Relief Tank of the Westinghouse Type Nuclear Power Plant)

  • 서재승;전규동
    • 한국시뮬레이션학회논문지
    • /
    • 제13권2호
    • /
    • pp.13-21
    • /
    • 2004
  • The thermal-hydraulic model ARTS which was based on the RETRAN-3D code adopted in the domestic full-scope power plant simulator which was provided in 1998 by KEPRI. Since ARTS is a generalized code to model the components with control volumes, the smaller time-step size should be used even if converged solution could not get in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. In the case of PRT(Pressurizer Relief Tank) model, it is consist of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume can limit the time-step size if we model it with a general control volume. To prevent the time-step size reduction due to convergence failure for simulating this component, we developed a dedicated model for PRT. The dedicated model was expected to provide substantially more accurate predictions in the analysis of the system transients. The results were resonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with the ANSI/ANS-3.5-1998 simulator software performance criteria and RETRAN-3D results.

  • PDF

VIPEX를 이용한 가상 원자력시설의 핵심구역 파악 분석 (Vital Area Identification Analysis of A Hypothetical Nuclear Facility Using VIPEX)

  • 이윤환;정우식;이진홍
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.87-95
    • /
    • 2011
  • The urgent VAI(Vital Area Identification) method development is required since 'The Act of Physical Protection and Radiological Emergency' that is established in 2003 requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The KAERI(Korea Atomic Energy Research Institute) has developed the VAI methodology and VAI software called as VIPEX(Vital area Identification Package EXpert) for identifying the vital areas. This study is to demonstrate the applicability of KAERI's VAI methodology to a hypothetical facility, and to identify the importance of information of cable and piping runs when identifying the vital areas. It is necessarily needed to consider cable and piping runs to determine the accurate and realistic TEPS(Top Event Prevention Set). If the information of cable and piping runs of a nuclear power plant is not considered when determining the TEPSs, it is absolutely impossible to acquire the complete TEPSs, and the results could be distorted by missing it. The VIPEX and FTREX(Fault Tree Reliability Evaluation eXpert) properly calculate MCSs and TEPSs using the fault tree model, and provide the most cost-effective method to save the VAI and physical protection costs.

Direct fault-tree modeling of human failure event dependency in probabilistic safety assessment

  • Ji Suk Kim;Sang Hoon Han;Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.119-130
    • /
    • 2023
  • Among the various elements of probabilistic safety assessment (PSA), human failure events (HFEs) and their dependencies are major contributors to the quantification of risk of a nuclear power plant. Currently, the dependency among HFEs is reflected using a post-processing method in PSA, wherein several drawbacks, such as limited propagation of minimal cutsets through the fault tree and improper truncation of minimal cutsets exist. In this paper, we propose a method to model the HFE dependency directly in a fault tree using the if-then-else logic. The proposed method proved to be equivalent to the conventional post-processing method while addressing the drawbacks of the latter. We also developed a software tool to facilitate the implementation of the proposed method considering the need for modeling the dependency between multiple HFEs. We applied the proposed method to a specific case to demonstrate the drawbacks of the conventional post-processing method and the advantages of the proposed method. When applied appropriately under specific conditions, the direct fault-tree modeling of HFE dependency enhances the accuracy of the risk quantification and facilitates the analysis of minimal cutsets.

Airborne HPGe spectrometer for monitoring of air dose rates and surface activities

  • Marcel Ohera;Lubomir Gryc;Irena Cespirova;Jan Helebrant;Lukas Skala
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4039-4047
    • /
    • 2023
  • This contribution describes the application of HPGe detector for the airborne quantitative analysis. The hardware of the airborne HPGe system was designed from the commercial components with only exception of the newly designed AirHPGeSpec special software to control, measure and process the data. The system was calibrated for the local air kerma rates measured on helicopter board and its conversion to the air kerma rates at 1 m above the ground was proposed. Two examples of the air kerma rates measured over the former uranium mining areas are presented and compared with the results of other airborne system on the board. This airborne HPGe system could be also used for measuring the surface activities in a radiation event. The nuclides of 131I, 132Te - 132I, 133I, 134I, 135I, 137Cs, 134Cs, 88Rb and 103Ru were selected from possible nuclear power plant emergency scenarios. The Monte Carlo simulation was used to calculate HPGe detector efficiencies for the flight altitudes from 25 to 300 m for the energies from 300 keV to 3 MeV of the nuclides in question. Also, the detection limits according to the Currie method as well as ISO 11929-2010 for selected nuclides are presented.

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.

피동 원자로건물 냉각계통 실험에 관한 수치적 연구 (Numerical Investigation on Experiment for Passive Containment Cooling System)

  • 하희운;서정수
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.