• 제목/요약/키워드: Nuclear Power Plant Performance

검색결과 508건 처리시간 0.024초

Operation optimization of auxiliary electric boiler system in HTR-PM nuclear power plant

  • Du, Xingxuan;Ma, Xiaolong;Liu, Junfeng;Wu, Shifa;Wang, Pengfei
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2840-2851
    • /
    • 2022
  • Electric boilers (EBs) are the backup steam source for the auxiliary steam system of high-temperature gas-cooled reactor nuclear power plants. When the plant is in normal operations, the EB is always in hot standby status. However, the current hot standby operation strategy has problems of slow response, high power consumption, and long operation time. To solve these problems, this study focuses on the optimization of hot standby operations for the EB system. First, mathematical models of an electrode immersion EB and its accompanying deaerator were established. Then, a control simulation platform of the EB system was developed in MATLAB/Simulink implementing the established mathematical models and corresponding control systems. Finally, two optimization strategies for the EB hot standby operation were proposed, followed by dynamic simulations of the EB system transient from hot standby to normal operations. The results indicate that the proposed optimization strategies can significantly speed up the transient response of the EB system from hot standby to normal operations and reduce the power consumption in hot standby operations, improving the dynamic performance and economy of the system.

원전 극한 환경적용을 위한 필드버스 통신망 요건 (Fieldbus Communication Network Requirements for Application of Harsh Environments of Nuclear Power Plant)

  • 조재완;이준구;허섭;구인수;홍석붕
    • 한국IT서비스학회지
    • /
    • 제8권2호
    • /
    • pp.147-156
    • /
    • 2009
  • As the result of the rapid development of IT technology, an on-line diagnostic system using the field bus communication network coupled with a smart sensor module will be widely used at the nuclear power plant in the near future. The smart sensor system is very useful for the prompt understanding of abnormal state of the key equipments installed in the nuclear power plant. In this paper, it is assumed that a smart sensor system based on the fieldbus communication network for the surveillance and diagnostics of safety-critical equipments will be installed in the harsh-environment of the nuclear power plant. It means that the key components of fieldbus communication system including microprocessor, FPGA, and ASIC devices, are to be installed in the RPV (reactor pressure vessel) and the RCS (reactor coolant system) area, which is the area of a high dose-rate gamma irradiation fields. Gamma radiation constraints for the DBA (design basis accident) qualification of the RTD sensor installed in the harsh environment of nuclear power plant, are typically on the order of 4 kGy/h. In order to use a field bus communication network as an ad-hoc diagnostics sensor network in the vicinity of the RCS pump area of the nuclear power plant, the robust survivability of IT-based micro-electronic components in such intense gamma-radiation fields therefore should be verified. An intelligent CCD camera system, which are composed of advanced micro-electronics devices based on IT technology, have been gamma irradiated at the dose rate of about 4.2kGy/h during an hour UP to a total dose of 4kGy. The degradation performance of the gamma irradiated CCD camera system is explained.

Reactor Power Cutback System Test Experience at YGN 4

  • Chi, Sung-Goo;Kim, Se-Chang;Seo, Jong-Tae;Eom, Young-Meen;Wook, Jeong-Dae;Park, Young-Boo
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.235-241
    • /
    • 1995
  • YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor Power Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems.

  • PDF

New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation

  • Elsisi, M.;Abdelfattah, H.
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.544-551
    • /
    • 2020
  • Reactor control is a standout amongst the most vital issues in the nuclear power plant. In this paper, the optimal design of variable structure controller (VSC) based on the lightning search algorithm (LSA) is proposed for a nuclear reactor power system. The LSA is a new optimization algorithm. It is used to find the optimal parameters of the VSC instead of the trial and error method or experts of the designer. The proposed algorithm is used for the tuning of the feedback gains and the sliding equation gains of the VSC to prove a good performance. Furthermore, the parameters of the VSC are tuned by the genetic algorithm (GA). Simulation tests are carried out to verify the performance and robustness of the proposed LSA-based VSC compared with GA-based VSC. The results prove the high performance and the superiority of VSC based on LSA compared with VSC based on GA.

Abnormality diagnosis model for nuclear power plants using two-stage gated recurrent units

  • Kim, Jae Min;Lee, Gyumin;Lee, Changyong;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2009-2016
    • /
    • 2020
  • A nuclear power plant is a large complex system with tens of thousands of components. To ensure plant safety, the early and accurate diagnosis of abnormal situations is an important factor. To prevent misdiagnosis, operating procedures provide the anticipated symptoms of abnormal situations. While the more severe emergency situations total less than ten cases and can be diagnosed by dozens of key plant parameters, abnormal situations on the other hand include hundreds of cases and a multitude of parameters that should be considered for diagnosis. The tasks required of operators to select the appropriate operating procedure by monitoring large amounts of information within a limited amount of time can burden operators. This paper aims to develop a system that can, in a short time and with high accuracy, select the appropriate operating procedure and sub-procedure in an abnormal situation. Correspondingly, the proposed model has two levels of prediction to determine the procedure level and the detailed cause of an event. Simulations were conducted to evaluate the developed model, with results demonstrating high levels of performance. The model is expected to reduce the workload of operators in abnormal situations by providing the appropriate procedure to ultimately improve plant safety.

The Performance Evaluation of NSSS Control Systems for UCN 4

  • Sohn, Suk-Whun;Song, In-Ho;Sohn, Jong-Joo;Park, Jong-Ho;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.339-348
    • /
    • 2001
  • NSSS Control Systems automatically mitigate transient conditions and leads to a stable plant condition without operator actions when a transient occurs during normal power operation. In this paper, the function and performance of NSSS control systems were examined and evaluated by comparing the predicted results with the measured data for the selected events. Loss of a Main Feedwater Pump and Load Rejection to House Load Operation events were selected for the evaluation among the transient tests peformed during the Power Ascension Test (PAT) of UCN unit 4. The overall schematic control actions of NSSS control systems can be evaluated easily through the observation of these two typical events. The selected events were analyzed by the KISPAC computer code[l] which had been used in developing the control logic and determining the control setpoints during the plant design. Additionally, the performance of FWCS during low power operation was evaluated. The result of evaluation showed that the NSSS control systems were designed properly and the performance of the NSSS control systems was excellent and also the computer code had a good prediction capability.

  • PDF

MPC를 이용한 원전 증기발생기의 수위제어에 관한 기초연구 (A Study on the Level Control in the Steam Generator of a Nuclear Power Plant by using Model Predictive Controller)

  • 손덕현;이창구;한진욱;한후석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2495-2497
    • /
    • 2000
  • Level control in the steam generator of a nuclear power plant is important process. But, the low power operation of nuclear power plant causes nonlinear characteristics and non minimum phase characteristics (swell and shrink), change of delay. So, we can't lead good results with conventional PID controller. Particularly, the design of controller with constraints is necessary. This paper introduces MPC(Model Predictive Control) with constraints and designs a good performance MPC controller in spite of the input constraints and nonlinear characteristics, non-minimum phase characteristics

  • PDF

Study on The Development of Basic Simulation Network for Operational Transient Analysis of The CANDU Power Plant

  • Park, Jong-Woon;Lim, Jae-cheon;Suh, Jae-seung;Chung, Ji-bum;Kim, Sung-Bae
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.423-428
    • /
    • 1995
  • Simulation models have been developed to predict the overall behavior of the CANDU plant systems during normal operational transients. For real time simulation purpose, simplified thermal hydraulic models are applied with appropriate system control logics, which include primary heat transport system solver with its component models and secondary side system models. The secondary side models are mainly used to provide boundary conditions for primary system calculation and to accomodate plant power control logics. Also, for the effective use of simulation package, hardware oriented basic simulation network has been established with appropriate graphic display system. Through validation with typical plant power maneuvering cases using proven plant performance analysis computer code, the present simulation package shows reasonable capability in the prediction of the dynamic behavior of plant variables during operational transients of CANDU plant, which means that this simulation tool can be utilized as a basic framework for full scope simulation network through further improvements.

  • PDF

원자력 발전소 계측제어시스템의 정보취득장치 설계 (Data Acquisition System Design of I&C System in Nuclear Power Plant)

  • 조정환;이동희
    • 조명전기설비학회논문지
    • /
    • 제17권2호
    • /
    • pp.102-108
    • /
    • 2003
  • 본 논문에서는 SDAS(Signal Data Acquisition System)를 설계하여 정밀도와 응답특성을 향상시킨 새로운 정보취득장치를 제안한다. 원자력 발전소에 적용되는 계측제어 시스템은 안전에 직접 또는 간접적으로 영향을 미치는 장치이므로 이들 기기는 안전등급의 분류에 따라 기기 검증의 절차에 의하여 현장 적용 이전에 주요 제어 설비가 설계명수 기간동안에 의도된 기능을 수행할 수 있음이 검증되어야 한다. 본 논문에서는 국제 기준 규격인 IEEE 규격과 Nuclear Regulatory Guide의 규격에 명시되어 있는 성능시험방법과 절차에 의한 기기검증에서 필수적인 장비인 정보취득장치를 제안하였고, 기존에 사용되고 있는 정보취득장치와 성능을 비교 분석하였다. 이론과 실험적인 연구가 수행되었고, 그 결과는 제안된 정보취득장치의 정밀도 성능이 개선되었음을 입증한다. 따라서 제안된 시스템은 고성능 계측제어시스템에 적용될 수 있다.

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.