• Title/Summary/Keyword: Nuclear Power Plant Construction

Search Result 326, Processing Time 0.029 seconds

Technology for the Detection of Corrosion Defects in Buried Pipes of Nuclear Power Plants with 3D FEM (3D 유한요소법을 이용한 원전 매설배관 부식결함 탐상기술 개발)

  • Kim, Jae-Won;Lim, Bu-Taek;Park, Heung-Bae;Chang, Hyun-Young
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.292-300
    • /
    • 2018
  • The modeling of 3D finite elements based on CAD data has been used to detect sites of corrosion defects in buried pipes. The results generated sophisticated profiles of electrolytic potential and vectors of current distributions on the earth surface. To identify the location of defects in buried pipes, the current distribution on the earth surface was projected to a plane of incidence that was identical to the pipe locations. The locations of minimum electrolytic potential value were found. The results show adequate match between the locations of real and expected defects based on modeling. In addition, the defect size can be calculated by integrating the current density curve. The results show that the defect sizes were $0.74m^2$ and $0.69m^2$, respectively. This technology may represent a breakthrough in the detection of indirect damage in various cases involving multiple defects in size and shape, complex/cross pipe systems, multiple anodes and stray current.

Review of Construction Business Intelligence Research

  • Baek, Seungwon;Han, Seung Heon;Yun, Sungmin;Jung, Wooyong
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.371-380
    • /
    • 2020
  • With the 4th industrial revolution, many advanced information technologies are being applied to the area of construction engineering and project management. These applications are usually focusing on design, construction and operation stage and are producing many meaningful fruits. Even though these studies are very important for the development of the construction industry, this study insists that the other stage perspective such as construction business also should be emphasized. Because business phase has significant impacts on the success of a construction project as well as design, construction and operation phase. So, this study reviewed the intelligent-approach papers in planning and marketing, estimation and bid, contract and claim, and project financing fields. This study provides some insights such as values, difficulties, limitations and future directions of business intelligence application.

  • PDF

Study on Dose Rate on the Surface of Cask Packed with Activated Cut-off Pieces from Decommissioned Nuclear Power Plant

  • Park, Kwang Soo;Kim, Hae Woong;Sohn, Hee Dong;Kim, Nam Kyun;Lee, Chung Kyu;Lee, Yun;Lee, Ji Hoon;Hwang, Young Hwan;Lee, Mi Hyun;Lee, Dong Kyu;Jung, Duk Woon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.178-186
    • /
    • 2020
  • Background: Reactor pressure vessel (RV) with internals (RVI) are activated structures by neutron irradiation and volume contaminated wastes. Thus, to develop safe and optimized disposal plan for them at a disposal site, it is important to perform exact activation calculation and evaluate the dose rate on the surface of casks which contain cut-off pieces. Materials and Methods: RV and RVI are subjected to neutron activation calculation via Monte Carlo methodology with MCNP6 and ORIGEN-S program-neutron flux, isotopic specific activity, and gamma spectrum calculation on each component of RV and RVI, and dose rate evaluation with MCNP6. Results and Discussion: Through neutron activation analysis, dose rate is evaluated for the casks containing cut-off pieces produced from decommissioned RV and RVI. For RV cut-off ones, the highest value of dose rate on the surface of cask is 6.97 × 10-1 mSv/hr and 2 m from it is 3.03 × 10-2 mSv/hr. For RVI cut-off ones, on the surface of it is 0.166 × 10-1 mSv/hr and 2 m from it is 1.04 × 10-1 mSv/hr. Dose rates for various RV and RVI cut-off pieces distributed lower than the limit except the one of 2 m from the cask surface of RVI. It needs to adjust contents in cask which carries highly radioactive components in order to decrease thickness of cask. Conclusion: Two types of casks are considered in this paper: box type for very-low-level waste (VLLW) as well as low-level waste (LLW) and cylinder type for intermediate-level waste (ILW). The results will contribute to the development of optimal loading plans for RV and RVI cut-off pieces during the decommissioning of nuclear power plant that can be used to prepare radioactive waste disposal plans for the different types of wastes-ILW, LLW, and VLLW.

The status of NORMs in natural environment adjacent to the Rooppur nuclear power plant of Bangladesh

  • Haydar, Md Abu;Hasan, Md Mehade;Jahan, Imrose;Fatema, Kanij;Ali, Md Idris;Paul, Debasish;Khandaker, Mayeen Uddin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4114-4121
    • /
    • 2021
  • The Rooppur Nuclear Power Plant (RNPP), the first nuclear power plant in Bangladesh with a capacity of 2.4 GWe, is under construction on the bank of the river Padma, at Rooppur in Bangladesh. Measurement of background radioactivity in the natural environment adjacent to RNPP finds great importance for future perspectives. Soil and sediment samples collected from upstream and downstream positions of the Padma River (adjacent to RNPP) were collected and analyzed by HPGe gamma-ray spectrometry for primordial radionuclides. The average activity concentrations (in Bqkg-1) of 226Ra, 232Th and 40K radionuclides in soil samples were found to be 44.99 ± 3.89, 66.28 ± 6.55 and 553 ± 82.17 respectively. Respective values in sediment samples were found to be 44.59 ± 4.58, 67.64 ± 7.93, 782 ± 108. Relevant radiation hazard indices and dosimetric parameters were calculated and compared with the world average data recommended by US-EPA. Analytical results show non-negligible radiation hazards to the surrounding populace. Measured data will be useful to monitor any change of background radioactivity in the surrounding environment of RNPP following its operation for the generation of nuclear energy.

The Comparative Experimental Study of short and long-term Behavior of the Blended High-Fluidity Cement Concrete and Existing Nuclear Power Plant Structural Concrete (기존 원전용 콘크리트와 다성분계 고유동 콘크리트의 장·단기거동 비교 실험 연구)

  • Lee, Pyung-Suk;Kwon, Ki-Joo;Kim, Su-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.195-202
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using flyash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

Effects of Construction and Operation of Nuclear Power Plants on Benthic Marine Algae (원자력발전소의 건설과 가동이 저서 해조류에 미치는 영향)

  • 김영환
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 1999
  • During the past several decades, electricity generating plant increased with remarkable rapidity in Korea. Recently the increase has been much more rapid as the rate of industrialization has accelerated. Construction of nuclear power plants in coastal areas inevitably caused the perturbation of critical coastal habitats and thus influenced marine algal species composition. Particularly, an increase in the building of nuclear power plants led the amounts of heat discharged to increase exponentially. As far as the effects of cooling water and thermal discharges are concerned, benthic marine algae are likely to be vulnerable to a discharge. Heated effluents from nuclear power plants, with the temperature rises of 7~12$^{\circ}C$ under normal operating and design conditions, are discharged through the discharge canal and into natural water bodies. It is clear that the characteristic marine algal community is developed in the area affected by the thermal discharges; i.e. low species richness and low species diversity. Nevertheless, it is worthwhile to note that elevated temperatures exert differential effects depending on the algal populations. Benthic marine algae grown at the discharge canal can be regarded as warm tolerant species. 35 species (4 blue-green, 9 green, 8 brown and 14 red algae) of marine algae occurred more than 20eye frequency at discharge canal of three nuclear power plants in the east coast during 1992 ~ 1998 and thus can be categorized as warm tolerant species in Korea. To minimize the ecological impacts of waste heat on benthic marine algae, it is recommended that, in the future, nuclear power plants will have to employ some form of closed-cycle cooling for the condensers.

  • PDF

Data management process for nuclear fuel replace program construction (핵 연료 교체 프로그램 구축을 위한 데이터 관리 프로세스)

  • Kim Young-Jin;Sin Won-Sik;Jung Hee-Chul
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1603-1608
    • /
    • 2006
  • Nuclear power plant have focused constituent that is always safety. However, period set to observe element that is economic performance keeping inner place now. Hereupon, in this study, chose fuel replace that is on one main activity doing at nuclear power plant for the target. And chose computerization and data management for fuel replace process to the direction.

  • PDF

Issues of New Technological Trends in Nuclear Power Plant (NPPs) for Standardized Breakdown Structure

  • Gebremichael, Dagem D.;Lee, Yunsub;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.353-358
    • /
    • 2020
  • Recent efforts to develop a common standard for nuclear power plants (NPPs) with the aim of creating (1) a digital environment for a better understanding of NPPs life-cycle management aspect and (2) engineering data interoperability by using existing standards among different unspecified project participants (e.g., owners/operators, engineers, contractors, equipment suppliers) during plants' life cycle process (EPC, O&M, and decommissioning). In order to meet this goal, there is a need for formulating a standardized high-level physical breakdown structure (PBS) for NPPs project management office (PMO). However, high-level PBS must be comprehensive enough and able to represent the different types of plants and the new trends of technologies in the industry. This has triggered the need for addressing the issues of the recent operational NPPs and future technologies' ramification for evaluating the changes in the NPPs physical components in terms of structure, system, and component (SSC) configuration. In this context, this ongoing study examines the recent conventional NPPs and technological trends in the development of future NPPs facilities. New reactor models regarding the overlap of variant issues of nuclear technology were explored. Finally, issues on PBS for project management are explored by the examination of the configuration of NPPs primary system. The primary systems' configuration of different reactor models is assessed in order to clarify the need for analyzing the new trends in nuclear technology and to formulate a common high-level PBS. Findings and implications are discussed for further studies.

  • PDF

A Study on the Availability Prediction of Start-up Power Supply in Nuclear Power Plant by FTAMethod (FTA기법에 의한 원전기동전원의 이용율 예측에 관한 연구)

  • Che, Gyu-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.517-523
    • /
    • 1999
  • The Start-up transformers or on-site stand-by transformers are installed for the start-up and shut-down of generator and emergency status in unclear power plant. The on-site power supply configuration using these transformers must be detemined by considering configuration requirements, site characteristics, reliability and availability severely because it is remarkably important for safety and benefit of plant. The start-up or stand-by power supply configuration has been determined considering only safety requirements and construction cost up to now in Korea. I study various reliability estimating methods for the prediction of availability, and estimate the unavailability for the start-up power supply system of two 1,000㎿ unclear power plants. I also detemine the reliability and unavailability and unavailavility of equipment, system and configuration using FTA method.

  • PDF

Evaluation for Mechanical Properties of Compress Strength and Dry Density of Concrete at NPP (원전 시설용 콘크리트의 압축강도 및 건조밀도 특성 평가)

  • Lee, Young-Dae;Kim, Gyu-Yong;Shin, Kyoung-Su;Nam, Jeong-Soo;Lee, Tae-Gyu;Choe, Gyeong-Choel
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.53-54
    • /
    • 2011
  • The facilities producing the nuclear energy chosen for resolving the recent global energy problem have been increasingly constructed, and hence more frequent durability tests on radiation shielding concrete are required due to NPP(Nuclear Power Plant) life extension and increase of radioactive waste repositories. Bulk dry density is one of the critical factors ensuring the durability and performance of the radiation shielding concrete because the design of the radiation shielding reinforced concrete structures for NPPs is based on the bulk dry density of the concrete. Bulk density of unconsolidated shielding concrete can be calculated utilizing a test assuring to satisfy the bulk dry density, or existing credible data set. This study evaluated correlation between bulk density and bulk dry density of the concrete used for Korean NPPs (y=1.0913X-0.2458) and developed a correlation expression considering standard deviation of bulk dry density (y=1.0913X-0.3358).

  • PDF