• Title/Summary/Keyword: Nuclear Power Plant(NPP)

Search Result 478, Processing Time 0.024 seconds

Leak Before Break Evaluation of Surge Line by Considering CPE under Beyond Design Basis Earthquake (설계초과지진시 CPE를 고려한 밀림관 파단전누설 평가)

  • Seung Hyun Kim;Youn Jung Kim;Han-geol Lee;Sun Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Nuclear Power Plants (NPP) should be designed to have sufficient safety margins and to ensure seismic safety against earthquake that may occur during the plant life time. After the 9.12 Gyeongju earthquake accident, the structural integrity of nuclear power plants due to the beyond design basis earthquake is one of key safety issues. Accordingly, it is necessary to conduct structural integrity evaluations for domestic NPPs under beyond design basis earthquake. In this study, the Level 3 LBB (Leak Before Break) evaluation was performed by considering the beyond design basis earthquake for the surge line of a OPR1000 plant of which design basis earthquake was set to be 0.2g. The beyond design basis earthquake corresponding to peak ground acceleration 0.4g at the maximum stress point of the surge line was considered. It was confirmed that the moment behaviors of the hot leg and pressurized surge nozzle were lower than the maximum allowable loading in moment-rotation curve. It was also confirmed that the LBB margin could be secured by comparing the LBB margin through the Level 2 method. It was judged that the margin was secured by reducing the load generated through the compliance of the pipe.

Feasibility Study on Recycling of Concrete Waste from NPP Decommissioning Through Literature Review (기존 문헌 분석을 통한 원전 콘크리트 해체 폐기물 재활용 가능성에 대한 연구)

  • Cheon, Ju-Hyun;Lee, Seong-Cheol;Kim, Chang-Lak;Park, Hong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • In this paper, the feasibility of recycling concrete waste as a method to reduce final disposal amount of wastes generated through decommissioning of nuclear power plant has been analyzed based on experimental results of existing literature. When recycled concrete waste was used as recycled aggregate, it was investigated through literature that the concrete strength decreased by 30~40% depending on the mixing ratio. It was also investigated that concrete with recycled aggregate can be used as a structural material when the quality of recycled aggregate is well managed since no significant problem was found. When recycled cement produced from concrete waste was used, the strength of concrete or mortar decreased considerably as the recycled cement content increased. Therefore, it can be concluded that concrete or mortar with recycled cement can be used as a filling material for final disposal of large radioactive waste rather than for structural use. This paper is expected to be useful for reduction on disposal volume and decommissioning cost for nuclear power plants such as Kori 1.

A Study on the Chinese NPP Development Plan and the Efficient Overseas Marketing System for Nuclear Power Plant Technology (중국의 원자력개발 계획과 한국 원전기술 수출의 효율적 추진 방안에 관한 연구)

  • Kim, H.M.;Hwang, J.K.;Kim, M.;Chung, H.J.;Jo, C.H.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.59-65
    • /
    • 1996
  • 중국은 향후 2020년까지 1000MW급 경수로를 중점적으로 35기이상을 건설할 것으로 예상되는 최대 잠재시장이다. 따라서 현재 1000MW급 원전기술자립을 95% 확보한 한국은 중국 및 인근 아시아지역 원전건설 시장에서 외국과의 경쟁력 확보를 위하여 주도적인 참여방안을 모색해야 한다. 이러한 관점에서 원자력기반기술이 우수한 중국과 한국은 한국형표준원전(KSNP)을 기본모델로 하여 중국 및 아시아의 원전건설에 적용할 표준원전(CSNP, ASNP)을 공동개발 하기 위한 협력체계 구성방안을 제안하였다. 또한 한국이 원자력기술 수출국으로 위치를 확고히 하고, WTO 출범에 따른 원자력시장 개방화에 경쟁력을 갖추기 위해서는 원자력 선진기술을 보유하고, 건설자금조달 및 사업관리 능력과 함께 폭넓은 해외협력 관계를 갖춘 세계적인 원전공급자(Nuclear Vendor)를 육성해야 한다.

  • PDF

Identification of nonregular indication according to change of grain size/surface geometry in nuclear power plant (NPP) reactor vessel (RV)-upper head alloy 690 penetration

  • Kim, Kyungcho;Kim, Changkuen;Kim, Hunhee;Kim, Hak-Joon;Kim, Jin-Gyum;Jhung, Myungjo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1524-1536
    • /
    • 2017
  • During the fabrication process of reactor vessel head penetration (RVHP), the grain size of the tube material can be changed by hot or cold work and the inner side of the tube can also be shrunk due to welding outside of the tube. Several nonregular time-of-flight diffraction (TOFD) signals were found because of deformed grains. In this paper, an investigation of nonregular TOFD indications acquired from RVHP tubes using experiments and computer simulation was performed in order to identify and distinguish TOFD signals by coarse grains from those by Primary Water Stress Corrosion Crack (PWSCC). For proper understanding of the nonregular TOFD indications, microstructural analysis of the RVHP tubes and prediction of signals scattered from the grains using Finite Element Method (FEM) simulation were performed. Prediction of ultrasonic signals from the various sizes of side drilled holes to find equivalent flaws, determination of the size of the nonregular TOFD indications from the coarse grains, and experimental investigation of TOFD signals from coarse grain and shrinkage geometry to identify PWSCC signals were performed. From the computer simulation and experimental investigation results, it was possible to obtain the nonregular TOFD indications from the coarse grains in the alloy 690 penetration tube of RVHP; these nonregular indications may be classified as PWSCC. By comparing the computer simulation and experimental results, we were able to confirm a clear difference between the coarse grain signal and the PWSCC signal.

Dose analysis of nearby residents and workers due to the emission accident of gaseous radioactive material at the spent resin mixture treatment facility

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4543-4553
    • /
    • 2023
  • The dose from a possible accident at a microwave-based spent resin mixture treatment facility that was to be installed and operated at the Wolsong nuclear power plant was analyzed to evaluate the radiological safety prior to its installation and operation. The dose to which workers and nearby residents are likely to be exposed was calculated based on the atmospheric dispersion and deposition factors using the XOQDOQ code. The highest atmospheric dispersion factors were 1.349E-05 s/m3 (workers) and 1.534E-06 s/m3 (residents). The highest doses due to emissions from the mock-up tank before operation were 1.91E-06 mSv (workers) and 1.78E-07 mSv (residents). Even after 3 h of operation, emissions from the mock-up tank had the greatest impact ranging from 4.63E-08 to 1.24E-06 mSv (workers) and 2.74E-10 to 1.16E-07 mSv (residents), respectively. The doses were 7.09E-09-4.55E-07 mSv and 4.18E-11-4.25E-08 mSv at 4-5 h of operation, and the maximum doses after operation reached 5.69E-07 mSv and 5.31E-08 mSv for the workers and residents, respectively. Even at the exclusion area boundary (EAB), 4.76E-08-9.51E-07 mSv (annual dose:9.52E-05–1.90E-03 mSv/y) was below the dose limit of the EAB, and the safety of the facility installation inside the NPP was confirmed.

A Study on the Food Consumption Rates for Off-site Radiological Dose Assessment around Korean Nuclear Power Plants (국내 원자력발전소 주변 주민의 방사선량 평가를 위한 음식물 섭취율 설정 연구)

  • Lee, Gab-Bock;Chung, Yang-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.183-196
    • /
    • 2008
  • The internal dose by food consumption mostly accounts for radiological dose of public around nuclear power plants (NPPs). But, food consumption rates applied to off-site dose calculation in Korea which are the result of field investigation around Kori NPP by the KAERI (Korea Atomic Energy Research Institute) in 1988, are not able to reflect the latest dietary characteristics of Korean. The food consumption rates to be used for radiological dose assessment in Korea are based on the maximum individual of US NRC (Nuclear Regulatory Commssion) Regulatory Guide 1.109. However, the representative individual of the critical group is considered in the recent ICRP (International Commission on Radiological Protection) recommendation and European nations' practice. Therefore, the study on the re-establishment of the food consumption rates for individual around nuclear power plant sites in Korea was carried out to reflect on the recent change of the Korean dietary characteristics and to apply the representative individual of critical group to domestic regulations. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. The statistical data such as mean, standard deviation, various percentile values about food consumption rates to be used for the representative individual of the critical group were analyzed by using the raw data of the national food consumption survey in $2001{\sim}2002$. Also, the food consumption rates for maximum individual are re-estimated.

Analysis of Chemical Cleaning for the Top-of-Tubesheet of NPP's Steam Generator (원전 증기발생기 관판 상단 화학세정 결과 분석)

  • Lee, Han-Chul;Sung, Ki-Bang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2043-2048
    • /
    • 2013
  • OPR-1000 CE Steam Generator, of which tube material is composed of Alloy-600 HTMA in nuclear power plant, secondary side is generated ODSCC(Outside Diameter Stress Corrosion Cracking) due to the accumulated sludge. ODSCC is centered around the tube sheet and is being affected depending on the height of the sludge. Chemical cleaning was carried out for a top-of-the-tube sheet(TTS) of Steam Generator in order to decrease corrosive condition of the secondary side of Steam Generator tubes and suppress the occurrence of stress corrosion cracking. The amount of sludge removal was 259.2kg. The height of the accumulated sludge was reduced from 0.71 to 0.34 inches. Corrosion rate as the maximum 2.34 mils was satisfied to within EPRI (Electric Power Research Institute) recommendation(10 mils).

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant (원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구)

  • Shin, Sang Shup;Hahm, Daegi;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.437-450
    • /
    • 2014
  • In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.

A Study on Improvement of Scaling Factor Prediction Using Artificial Neural Network

  • Lee, Sang-Chul;Hwang, Ki-Ha;Kang, Sang-Hee;Lee, Kun-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.534-538
    • /
    • 2003
  • Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed knowledge of the natures and quantities of radionuclides in waste package. Many of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the Indirect method by which the concentrations of DTM (Difficult-to-Measure) nuclide is decided using the relation of concentrations (Scaling Factor) between Key (Easy-to-Measure) nuclide and DTM nuclide with measured concentrations of Key nuclide. In general, scaling factor is determined by using of log mean average (LMA) and regression. These methods are adequate to apply most corrosion product nuclides. But in case of fission product nuclides and some corrosion product nuclides, the predicted values aren't well matched with the original values. In this study, the models using artificial neural network (ANN) for C-14 and Sr-90 are compared with those using LMA and regression. The assessment of models is executed in the two parts divided by a training part and a validation part. For all of two nuclides in the training part, the predicted values using ANN are well matched with the measured values compared with those using LMA and regression. In the validation part, the accuracy of the predicted values using ANN is better than that using LMA and is similar to or better than that using regression. It is concluded that the predicted values using ANN model are better than those using conventional model in some nuclides and ANN model can be used as the complement of LMA and regression model.

  • PDF

A Study on Radioactive Source-term Assessment Method for Decommissioning PWR Primary System (PWR 1차계통내 해체 방사성선원항 평가방법에 관한 연구)

  • Song, Jong Soon;Kim, Hyun-Min;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.153-164
    • /
    • 2014
  • Currently, there are many programs which are now being developed or already developed to predict radionuclide and corrosion product at the stage of designing NPP. However, since there are not many developments in evaluating quantity of activation corrosion products occurring when disassembling a nuclear power plant there exist some difficulties in calculating accurately. In order to evaluate activation products inventory for the research of effect of neutron activation in the reactor vessel, component of nuclear reactor and adjacent structures, it should be evaluated by using operation history of nuclear reactor, material composition of structure and average neutron flux in every field representing fixed structure of nuclear reactor. In this study, CORA, PACTOLE, CRUDSIM, CREAT and ACE codes are analyzed to predict the quantity of radionuclide and corrosion product of primary reactor which is used at the stage of designing. As a future study, the accuracy in calculating the quantity of product corrosion can be increase by finding out the possibility of use and improvement for evaluation of the decontamination.