• Title/Summary/Keyword: Nuclear Liquid Metal Fast Reactor

Search Result 26, Processing Time 0.024 seconds

Evaluation of a Sodium-Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

  • Ahn, Sang June;Ha, Kwi-Seok;Chang, Won-Pyo;Kang, Seok Hun;Lee, Kwi Lim;Choi, Chi-Woong;Lee, Seung Won;Yoo, Jin;Jeong, Jae-Ho;Jeong, Taekyeong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.952-964
    • /
    • 2016
  • The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium-water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium-water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

Elevated Temperature Design of KALIMER Reactor Internals Accounting for Creep and Stress-Rupture Effects

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.566-594
    • /
    • 2000
  • In most LMFBR(Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER(Korea Advanced Liquid MEtal Reactor) reactor internal strictures is carried out for normal operating conditions which have the operating temperature 53$0^{\circ}C$ and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME Code Case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects.

  • PDF

Drop Performance Test of Control Rod Assembly for Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR 제어봉집합체 낙하성능시험)

  • Lee, Young Kyu;Kim, Hoe Woong;Lee, Jae Han;Koo, Gyeong Hoi;Kim, Jong Bum;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.134-140
    • /
    • 2016
  • The Control Rod Assembly (CRA) controls the reactor power by adjusting its position in the reactor core during normal operation and should be quickly inserted into the reactor core by free drop under scram condition to shut down chain reactions. Therefore, the drop time of the CRA is one of important factors for the safety of the nuclear reactor and must be experimentally verified. This study presents the drop performance test of the CRA which has been conceptually designed for the Proto-type Generation IV Sodium-cooled Fast Reactor. During the test, the CRA was free dropped from a height of 1 m under different flow rate conditions and its drop time was measured. The results showed that the drop time of the CRA increased as the flow rate increased; the average drop times of the CRA were approximately 1.527 seconds, 1.599 seconds and 1.676 seconds at 0%, 100% and 200% of design flow rates, respectively.

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L.;Barani, T.;Boer, B.;Cognini, L.;Nevo, A. Del;Lainet, M.;Lemehov, S.;Magni, A.;Marelle, V.;Michel, B.;Pizzocri, D.;Schubert, A.;Uffelen, P. Van;Bertolus, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3367-3378
    • /
    • 2021
  • The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.

Dynamic Behavior of Oxide and Nitride LMR Cores during Unprotected Transients

  • Na, Byung-Chan;Dohee Hahn
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.489-494
    • /
    • 1997
  • A comparative transient analyses were performed for oxide and nitride cores or a large (3000 MWt), pool-type, liquid-metal-cooled reactor (LMR). The study was focused on three representative accident initiators with failure to scram : the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected fast transient overpower (UFTOP). The margins to fuel melting and sodium boiling have been evaluated for these representative transients. The results show that there is an increase in safety margin with nitride core which maintains the physical dimensions of the oxide core.

  • PDF

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

Development of Liquid Metal Passive Cooling Flow Simulation System (액체금속 피동냉각유동모사 실증설비의 개발)

  • Ryu, Kyung-Ha;Kim, Jae-Hyoung;Lee, Tae-Hyun;Lee, Sang-Hyuk;Bahn, Byoung-Min
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.257-264
    • /
    • 2015
  • To maintain sustainability of nuclear energy as an important energy source, both safety problem and Spent Nuclear Fuels(SNFs) problem should be solved. In case of Gen-IV reactors such as fast reactor, SNFs can be used as fuels by using fast neutrons. It can be a suitable treatment method of high-level waste in near future. Liquid metals such as Sodium or Lead-Bismuth Eutectic (LBE) can be possibly used as a coolant to use fast neutrons. In this paper, it was described that natural circulation parameter studies, design analyses, material selections and a completion of facilities. To develop a natural circulation facility, thermal hydraulic analyses were performed. Installation technique of liquid metal natural circulation were secured.

Performance test and uncertainty analysis of the FBG-based pressure transmitter for liquid metal system

  • Byeong-Yeon KIM;Jewhan LEE;Youngil CHO;Jaehyuk EOH;Hyungmo KIM
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4412-4421
    • /
    • 2022
  • The pressure measurement in the high-temperature liquid metal system, such as Sodium-cooled Fast Reactor(SFR), is important and yet it is very challenging due to its nature. The measuring pressure is relatively at low range and the applied temperature varies in wide range. Moreover, the pressure transfer material in impulse line needs to considered the high temperature condition. The conventional diaphragm-based approach cannot be used for it is impossible to remove the effect of thermal expansion. In this paper, the Fiber Bragg Grating(FBG) sensor-based pressure measuring concept is suggested that it is free of problems induced by the thermal expansion. To verify this concept, a prototype was fabricated and tested in an appropriate conditions. The uncertainty analysis result of the experiment is also included. The final result of this study clearly showed that the FBG-based pressure transmitter system is applicable to the extreme environment, such as SFR and any other high-temperature liquid metal system and the measurement uncertainty is within reasonable range.