• Title/Summary/Keyword: Nuclear Fusion Reactor

검색결과 77건 처리시간 0.024초

손상치유 능력을 가지는 탄화규소의 강도 특성과 탄성파 특성 (Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Damage-Healing Ability)

  • 김미경;안병건;김진욱;박인덕;안석환;남기우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.337-341
    • /
    • 2004
  • Engineering ceramics have superior heat resistance, corrosion resistance, and wear resistance. Consequently, these art significant candidates for hot-section structural components of heat engine and the inner containment of nuclear fusion reactor. Besides, some of them have the ability to heal cracks and great benefit can be anticipated with great benefit the structural engineering field. Especially, law fracture toughness of ceramics supplement with self-healing ability. In the present study, we have been noticed some practically important points for the healing behavior of silicon nitride, alumina, mullite with SiC particle and whisker. The presence of silicon carbide (SiC) in ceramic compound is very important for crack-healing behavior. However, self-healing of SiC has not been investigated well in detail yet. In this study, commercial SiC was selected as sample, which can be anticipated in the excellent crack healing ability. The specimens were produced three-point bending specimen with a critical semi-circular crack of which size that is about $50-700{\mu}m$. Three-point bending test and static fatigue test were performed cracked and healed SiC specimens. A monotonic bending load was applied to cracked specimens by three-point loading at different temperature. The purpose of this paper is to report Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Crack Healing Ability.

  • PDF

극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구 (A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature)

  • 이준현
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.

삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (I) (Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (I))

  • 조경원;최재하;장민혁;이영상;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.114-119
    • /
    • 2015
  • Nowdays, fossil fuels have been used as an important resource in development of industry. But it is limited and caused climate change such as pollution and global warming. So nuclear fusion research is being issued with tritium to develop eco-friendly and sustainable energy. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER), weld present in the SDS bottles are easily exposed to the hydrogen embrittlement of special characteristics of the hydrogen in hydrogen atmosphere, When the hydrogen embrittlement is rapidly progresses, the cracking is generated in the weld zone. Due to this cracking, the risk of leakage of tritium into the atmosphere occurs. In this study, hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as rupture strength test, three point bend test and hardness test in accordance with the respective time have been conducted and the fracture was observed by scanning electron microscopy(SEM) after the mechanical properties evaluation.

소형 공정열교환기 시제품 고온구조해석 - 용접부 물성치를 고려한 해석 - (High-Temperature Structural Analysis of a Small-Scale PHE Prototype - Analysis Considering Material Properties in Weld Zone -)

  • 송기남;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1289-1295
    • /
    • 2012
  • 수소를 대량으로 생산하기 위한 원자력수소생산시스템에서 공정열교환기는 초고온가스로로부터 생성된 초고온 열을 화학반응공정으로 전달하는 핵심기기이다. 한국원자력연구원에 구축되어 있는 소형가스루프에서 Hastelloy-X 로 제작된 소형 공정열교환기(PHE) 시제품에 대한 성능시험이 수행되고 있다. 그동안 소형 PHE 시제품에 대한 고온구조해석은 용접부의 기계적 물성변화를 고려하지 않은 해석이 주로 수행되었다. 본 연구에서는 계장화 압입시험으로부터 얻은 용접부 기계적 물성치를 이용하여 고온구조해석을 수행하고 그 결과를 분석하였다.

수소동위원소 공정 안전해석 (Safety Analysis of a Hydrogen Isotopes Process)

  • 정흥석;강현구;장민호;조승연;김원국;남재연;김덕진;송규민;백승우;구대서;정동유;이정민;김창석;정기정;윤세훈
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.219-226
    • /
    • 2012
  • A nuclear fusion fuel cycle plant is composed of various subsystems such as a hydrogen isotope storage and delivery system, a tokamak exhaust processing system, and a hydrogen isotope separation system. Korea shares in the construction of the International Thermonuclear Experimental Reactor fuel cycle plant with the EU, Japan and US, and is responsible for the development and supply of the storage and delivery system. We thus present details on the hydrogen isotope process safety. The main safety analysis procedure is to use a hazard and operability study. Nine segments were studied how the plant might deviate from its design purpose. We present a detailed description of the process, examine every part of it to determine how deviations from the design intent can occur and decide whether these deviations can give rise to hazards. We determine possible causes and note protective systems, evaluate the consequences of the deviation, and recommend actions to achieve our safety goal.

HIGH HEAT FLUX TEST WITH HIP BONDED 35X35X3 BE/CU MOCKUPS FOR THE ITER BLANKET FIRST WALL

  • Lee, Dong-Won;Bae, Young-Dug;Kim, Suk-Kwon;Jung, Hyun-Kyu;Park, Jeong-Yong;Jeong, Yong-Hwan;Choi, Byung-Kwon;Kim, Byoung-Yoon
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.662-669
    • /
    • 2010
  • To develop the manufacturing methods for the blanket first wall (FW) of the International Thermonuclear Experimental Reactor (ITER) and to verify the integrity of the joint, Be/Cu mockups were fabricated and tested at the KoHLT-1 (Korea Heat Load Test facility), a graphite heater facility located at the Korea Atomic Energy Research Institute (KAERI). Since Be and Cu joining is the focus of the present study, the fabricated mockups had a CuCrZr heat sink joined with three Be tiles as an armor material, unlike the original ITER blanket FW, which has a stainless steel structure and coolant tubes. Hot isostatic pressing (HIP) was carried out at $580^{\circ}C$ and 100 MPa for 2 hours as the method for Be/Cu joining. Three interlayers, namely, $1{\mu}mCr/10{\mu}mCu$, $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$, and $5{\mu}mTi/10{\mu}mCu$ were applied as a coating to the Be tiles by a physical vapor deposition (PVD) method. A shear test was performed with the specimens, which were fabricated by the same methods as those used to fabricate the mockups. The average values were 125 MPa to 180 MPa, and the samples with the $1{\mu}mCr/10{\mu}mCu$ interlayer showed the lowest value. No defect or delamination was found in the joints of the mockups by the developed ultrasonic test using a flat-type probe with a 10 MHz frequency and a 0.25 inch diameter. High heat flux (HHF) tests were performed at $1.0\;MW/m^2$ heat flux for each mockup using the given conditions, and the results were analyzed by ANSYS-CFX code. For the test criteria, an expected fatigue lifetime about 1,000 cycles was obtained by analysis with ANSYS-mechanical code. Mockups using the interlayers of $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$ and $5{\mu}mTi/10{\mu}mCu$ survived up to 1,100 cycles over the required number of cycles. However, one of the Be tiles in the other two mockups using the $1{\mu}mCr/10{\mu}mCu$ interlayer was detached during the screening test, and others were detached by discharge after 862 cycles. The integrity of the joints using the proposed interlayers was proven by the HHF test, but the other interlayer requires more study before it can be used for the joining of Be to Cu. Moreover, it was confirmed that the measured temperatures agreed well with the analysis temperatures, which were used to estimate the lifetime and that the developed facility showed its capability of the long time operation.

핵융합로부품 시험을 위한 고열부하 시험시설 KoHLT-1 구축 (Development of a High Heat Load Test Facility KoHLT-1 for a Testing of Nuclear Fusion Reactor Components)

  • 배영덕;김석권;이동원;신희윤;홍봉근
    • 한국진공학회지
    • /
    • 제18권4호
    • /
    • pp.318-330
    • /
    • 2009
  • 본 한국원자력연구원에서는 국제열핵융합실험로(ITER)의 일차벽을 개발하기 위해 그라파이트 히터를 이용한 고열부하 시험시설 KoHLT-1(Korea Heat Load Test facility-1)을 구축하였으며, 현재 정상적으로 가동되고 있다. KoHLT-1의 주목적은 Be-CuCrZr-SS의 이종 금속이 HIP 방법에 의해 접합된 ITER 일차벽 mockup의 접합 건전성을 확인하는데 있다. KoHLT-1은 판형 그라파이트 히터, 냉각 jacket이 부착된 상자형 시험용기, 직류 전원, 냉각계통, He 기체 공급계통과 각종 진단계통으로 구성되어 있으며, 이 모든 시설은 Be 처리가 가능한 특수 정화계통이 설치된 실험실에 설치되었다. 그라파이트 히터는 두개의 시험 대상물 사이에 설치되며, 시험대상물과의 거리는 $2{\sim}3\;mm$이다. 시험 대상물의 크기와 요구되는 열유속에 따라 여러 가지의 그라파이트 히터를 설계, 제작하였으며, 전기 저항은 고온 운전 중에 $0.2{\sim}0.5{\Omega}$이 되도록 하였다. 히터는 100V/400 A의 직류전원에 연결되어 있으며, PC와 multi function module로 구성된 전류 조정계통에 의해 미리 프로그램되어 있는 패턴으로 전류를 자동 조절하게 된다. 두 시험대상물에 인가되는 열유속은 calorimetry법에 의해 냉각수의 입, 출구 온도와 유량을 측정하여 얻게 된다. 여러 가지 형태의 ITER 일차벽 Be mockups에 대해 고열부하 시험을 수행하였으며, 시험을 통하여 KoHLT-1 고열부하 시험 시설의 성능이 확인되었고, 24시간 이상의 연속 운전에 있어서도 그 신뢰성이 입증되었다.