• Title/Summary/Keyword: Nuclear Fuel bundle

Search Result 127, Processing Time 0.03 seconds

FISSION PRODUCT AND ACTINIDE RELEASE FROM THE DEBRIS BED TEST PHEBUS FPT4: SYNTHESIS OF THE POST TEST ANALYSES AND OF THE REVAPORISATION TESTING OF THE PLENUM SAMPLES

  • Bottomley P.D.W.;Gregoire A.C.;Carbol P.;Glatz J.P.;Knoche D.;Papaioannou D.;Solatie D.;Van Winckel S.;Gregoire G.;Jacquemain D.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.163-174
    • /
    • 2006
  • The $Ph{\acute{e}}bus$ FP project is an international reactor safety project. Its main objective is to study the release, transport and retention of fission products in a severe accident of a light water reactor (LWR). The FPT4 test was performed with a fuel debris bed geometry, to look at late phase core degradation and the releases of low volatile fission products and actinides. Post Test Analyses results indicate that releases of noble gases (Xe, Kr) and high-volatile fission products (Cs, I) were nearly complete and comparable to those obtained during $Ph{\acute{e}}bus$ tests performed with a fuel bundle geometry (FPT1, FPT2). Volatile fission products such as Mo, Te, Rb, Sb were released significantly as in previous tests. Ba integral release was greater than that observed during FPT1. Release of Ru was comparable to that observed during FPT1 and FPT2. As in other $Ph{\acute{e}}bus$ tests, the Ru distribution suggests Ru volatilization followed by fast redeposition in the fuelled section. The similar release fraction for all lanthanides and fuel elements suggests the released fuel particles deposited onto the plenum surfaces. A blockage by molten material induced a steam by-pass which may explain some of the low releases. The revaporisation testing under different atmospheres (pure steam, $H_2/N_2$ and steam /$H_2$) and up to $1000^{\circ}C$ was performed on samples from the first upper plenum. These showed high releases of Cs for all the atmospheres tested. However, different kinetics of revaporisation were observed depending on the gas composition and temperature. Besides Cs, significant revaporisations of other elements were observed: e.g. Ag under reducing conditions, Cd and Sn in steam-containing atmospheres. Revaporisation of small amounts of fuel was also observed in pure steam atmosphere.

Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System (CANDU 사용후핵연료 처분시스템 효율향상 개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.169-179
    • /
    • 2011
  • There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over $100^{\circ}C$ were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

Development of Integrity Evaluation System for CANDU Pressure Tube (CANDU 압력관에 대한 건전성 평가 시스템 개발)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.843-848
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tubes, the integrity evaluation must be carried out, and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire integrity evaluation process. For this reason, an integrity evaluation system, which provides efficient way of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). Various analysis methods are provided for the integrity evaluation of pressure tube. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

  • PDF

Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels (복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석)

  • Hong, Seong-Ho;Shin, Jong-Keun;Choi, Young-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

Development of CANDU Pressure Tube Integrity Evaluation System;Its Application to Sharp Flaw and Blunt Notch (CANDU 압력관에 대한 건전성 평가시스템 개발;예리한 결함 및 둔한 노치에의 적용)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.206-214
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tube s. the integrity evaluation must be carried out. and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire: integrity evaluation process. For this reason. an integrity evaluation system, which provides efficient of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). This system does not only provide various databases including the 3-D finite element analysis results on pressure tubes, inspection data and design specifications but also is compatible with other commercial database software. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

Failure Probability Estimation of Flaw in CANDU Pressure Tube Considering the Dimensional Change (가동중 중수로 압력관의 외경과 두꼐 변화를 고려한 결함의 파손확률 예측)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2305-2311
    • /
    • 2002
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and heavy water coolant. Pressure tubes are installed horizontally inside the reactor and only selected samples are periodically examined during in-service inspection. In this respect, a probabilistic safety assessment method is more appropriate fur the assessment of overall pressure tube safety. The failure behavior of CANDU pressure tubes, however, is governed by delayed hydride cracking which is the major difference from pipings and reactor pressure vessels. Since the delayed hydride cracking has more widely distributed governing parameters, it is impossible to apply a general PFM methodology directly. In this paper, a PFM methodology for the safety assessment of CANDU pressure tubes is introduced by applying Monte Carlo simulation in determining failure probability Initial hydrogen concentration, flaw shape and depth, axial and radial crack growth rate and fracture toughness were considered as probabilistic variables. Parametric study has been done under the base of pressure tube dimension and hydride precipitation temperature in calculating failure probability. Unstable fracture and plastic collapse are used for the failure assessment. The estimated failure probability showed about three-order difference with changing dimensions of pressure tube.