• Title/Summary/Keyword: Nuclear Fuel

Search Result 3,583, Processing Time 0.03 seconds

Neutronic study of utilization of discrete thorium-uranium fuel pins in CANDU-6 reactor

  • Deng, Nianbiao;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Xie, Qin;Zhao, Pengcheng;Liu, Zijing;Zeng, Wenjie
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.377-383
    • /
    • 2019
  • Targeting at simulating the application of thorium-uranium (TU) fuel in the CANDU-6 reactor, this paper analyzes the process using the code DRAGON/DONJON where the discrete TU fuel pins are applied in the CANDU-6 reactor under the time-average equilibrium refueling. The results show that the coolant void reactivity of the assembly analyzed in this paper is lower than that of 37-element bundle cell with natural uranium and 37-element bundle cell with mixed TU fuel pins; that the max time-average channel/bundle power of the core meets the limits - less than 6700kW/860 kW; that the fuel conversion ratio is higher than that of the CANDU-6 reactor with natural uranium; and that the exit burnup increases to 13400 MWd/tU. Thus, the simulation in this paper with the fuel in the 37-element bundle cell using discrete TU fuel pins can be considered to be applied in CANDU-6 reactor with adequate modifications of the core structure and operating modes.

EXTENDED DRY STORAGE OF USED NUCLEAR FUEL: TECHNICAL ISSUES: A USA PERSPECTIVE

  • Mcconnell, Paul;Hanson, Brady;Lee, Moo;Sorenson, Ken
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2011
  • Used nuclear fuel will likely be stored dry for extended periods of time in the USA. Until a final disposition pathway is chosen, the storage periods will almost definitely be longer than were originally intended. The ability of the important-tosafety structures, systems, and components (SSCs) to continue to meet storage and transport safety functions over extended times must be determined. It must be assured that there is no significant degradation of the fuel or dry cask storage systems. Also, it is projected that the maximum discharge burnups of the used nuclear fuel will increase. Thus, it is necessary to obtain data on high burnup fuel to demonstrate that the used nuclear fuel remains intact after extended storage. An evaluation was performed to determine the conditions that may lead to failure of dry storage SSCs. This paper documents the initial technical gap analysis performed to identify data and modeling needs to develop the desired technical bases to ensure the safety functions of dry stored fuel.

Validation of the fuel rod performance analysis code FRIPAC

  • Deng, Yong-Jun;Wei, Jun;Wang, Yang;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1596-1609
    • /
    • 2019
  • The fuel rod performance has great importance for the safety and economy of an operating reactor. The fuel rod performance analysis code, which considers the thermal-mechanical response and irradiation effects of fuel rod, is usually developed in order to predict fuel rod performance accurately. The FRIPAC (${\underline{F}}uel$ ${\underline{R}}od$ ${\underline{I}}ntegral$ ${\underline{P}}erformance$ ${\underline{A}}nalysis$ ${\underline{C}}ode$) is such a fuel rod performance analysis code that has been developed recently by China Nuclear Power Technology Research Institute Co. Ltd. The code aims at the computational simulation of the Pressurized Water Reactor fuel rod behavior for both steady-state and power ramp condition. A brief overview of FRIPAC is presented including the computational framework and the main behavioral models. Validation of the code is also presented and it focuses on the fuel rod behavior including fuel center temperature, fission gas release, rod internal pressure/internal void volume, cladding outer diameter and cladding corrosion thickness. The validation is based on experimental data from several international projects. The validation results indicate that FRIPAC is an accurate and reliable fuel rod performance analysis code because of the satisfactory comparison results between the experimental measurements and the code predictions.

Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes

  • Cognini, L.;Cechet, A.;Barani, T.;Pizzocri, D.;Van Uffelen, P.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.562-571
    • /
    • 2021
  • In this work, we propose a new mechanistic model for the treatment of helium behaviour which includes the description of helium solubility in oxide fuel. The proposed model has been implemented in SCIANTIX and validated against annealing helium release experiments performed on small doped fuel samples. The overall agreement of the new model with the experimental data is satisfactory, and given the mechanistic formulation of the proposed model, it can be continuously and easily improved by directly including additional phenomena as related experimental data become available.

Development status of microcell UO2 pellet for accident-tolerant fuel

  • Kim, Dong-Joo;Kim, Keon Sik;Kim, Dong Seok;Oh, Jang Soo;Kim, Jong Hun;Yang, Jae Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.253-258
    • /
    • 2018
  • A microcell $UO_2$ pellet, as an accident-tolerant fuel pellet, is being developed to enhance the accident tolerance of nuclear fuels under accident conditions as well as the fuel performance under normal operation conditions. Improved capture-ability for highly radioactive and corrosive fission product (Cs and I) is the distinct feature of a ceramic microcell $UO_2$ pellet, and the enhanced pellet thermal conductivity is that of a metallic microcell $UO_2$ pellet. The fuel temperature can be effectively decreased by enhanced thermal conductivity. In this study, the material concepts of metallic and ceramic microcell $UO_2$ pellets were designed, and the fabrication process of microcell $UO_2$ pellets embodying the designed concept was developed. We successfully implemented the microcell $UO_2$ pellets and produced microcell $UO_2$ pellets. In addition, an assessment of the out-of-pile properties of a microcell $UO_2$ pellet was performed, and the in-reactor performance and behavior of the developed microcell pellets were evaluated through a Halden irradiation test. According to the expectations, the excellent performance of the microcell $UO_2$ pellets was confirmed by the online measurement data of the Halden irradiation test.

Neutronic design and evaluation of the solid microencapsulated fuel in LWR

  • Deng, Qianliang;Li, Songyang;Wang, Dingqu;Liu, Zhihong;Xie, Fei;Zhao, Jing;Liang, Jingang;Jiang, Yueyuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3095-3105
    • /
    • 2022
  • Solid Microencapsulated Fuel (SMF) is a type of solid fuel rod design that disperses TRISO coated fuel particles directly into a kind of matrix. SMF is expected to provide improved performance because of the elimination of cladding tube and associated failure mechanisms. This study focused on the neutronics and some of the fuel cycle characteristics of SMF by using OpenMC. Two kinds of SMFs have been designed and evaluated - fuel particles dispersed into a silicon carbide matrix and fuel particles dispersed into a zirconium matrix. A 7×7 fuel assembly with increased rod diameter transformed from the standard NHR200-II 9×9 array was also introduced to increase the heavy metal inventory. A preliminary study of two kinds of burnable poisons (Erbia & Gadolinia) in two forms (BISO and QUADRISO particles) was also included. This study found that SMF requires about 12% enriched UN TRISO particles to match the cycle length of standard fuel when loaded in NHR200-II, which is about 7% for SMF with increased rod diameter. Feedback coefficients are less negative through the life of SMF than the reference. And it is estimated that the average center temperature of fuel kernel at fuel rod centerline is about 60 K below that of reference in this paper.

Development of the Defect Analysis Technology for CANDU Spent Fuel

  • Kim, Yong-Chan;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.215-223
    • /
    • 2021
  • The domestic CANDU nuclear power plants have been operated for a long time and various unforeseen spent fuel defects have been discovered. As the spent fuel defects are important factors in the safety of the nuclear power plant, a study on the analysis of the spent fuel defects to prevent their recurrence is necessary. However, in cases where the fuel rods inside the fuel assembly are defected, it is difficult to dismantle the fuel assembly owing to their welded structure and the facility conditions of the plant. Therefore, it is impossible to analyze the spent fuel defect because it is difficult to visually check the shape of the fuel defect. To resolve these problems, an analysis technology that can predict the number of defected fuel rods and defect size was developed. In this study, we developed a methodology for investigating the root cause of spent fuel defects using a database of the earlier fuel defects in the plants. It is anticipated that in the future this analysis technology will be applied when spent fuel defects occur.

Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Axial and Bending Loads During Transportation

  • Lee, Seong-Ki;Lee, Dong-Hyo;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2021
  • This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.