• Title/Summary/Keyword: Nuclear Decommissioning

Search Result 353, Processing Time 0.083 seconds

Study on Dose Rate on the Surface of Cask Packed with Activated Cut-off Pieces from Decommissioned Nuclear Power Plant

  • Park, Kwang Soo;Kim, Hae Woong;Sohn, Hee Dong;Kim, Nam Kyun;Lee, Chung Kyu;Lee, Yun;Lee, Ji Hoon;Hwang, Young Hwan;Lee, Mi Hyun;Lee, Dong Kyu;Jung, Duk Woon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.178-186
    • /
    • 2020
  • Background: Reactor pressure vessel (RV) with internals (RVI) are activated structures by neutron irradiation and volume contaminated wastes. Thus, to develop safe and optimized disposal plan for them at a disposal site, it is important to perform exact activation calculation and evaluate the dose rate on the surface of casks which contain cut-off pieces. Materials and Methods: RV and RVI are subjected to neutron activation calculation via Monte Carlo methodology with MCNP6 and ORIGEN-S program-neutron flux, isotopic specific activity, and gamma spectrum calculation on each component of RV and RVI, and dose rate evaluation with MCNP6. Results and Discussion: Through neutron activation analysis, dose rate is evaluated for the casks containing cut-off pieces produced from decommissioned RV and RVI. For RV cut-off ones, the highest value of dose rate on the surface of cask is 6.97 × 10-1 mSv/hr and 2 m from it is 3.03 × 10-2 mSv/hr. For RVI cut-off ones, on the surface of it is 0.166 × 10-1 mSv/hr and 2 m from it is 1.04 × 10-1 mSv/hr. Dose rates for various RV and RVI cut-off pieces distributed lower than the limit except the one of 2 m from the cask surface of RVI. It needs to adjust contents in cask which carries highly radioactive components in order to decrease thickness of cask. Conclusion: Two types of casks are considered in this paper: box type for very-low-level waste (VLLW) as well as low-level waste (LLW) and cylinder type for intermediate-level waste (ILW). The results will contribute to the development of optimal loading plans for RV and RVI cut-off pieces during the decommissioning of nuclear power plant that can be used to prepare radioactive waste disposal plans for the different types of wastes-ILW, LLW, and VLLW.

Packing placement method using hybrid genetic algorithm for segments of waste components in nuclear reactor decommissioning

  • Kim, Hyong Chol;Han, Sam Hee;Lee, Young Jin;Kim, Dai Il
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3242-3249
    • /
    • 2022
  • As Kori unit 1 is undergoing the decommissioning process, estimating the disposal amount of waste from the decommissioned nuclear reactor has become one of the challenging issues. Since the waste disposal amount estimation depends on the packing of the waste, it is highly desirable to optimize the waste packing plan. In this study, we developed an efficient scheme for packing waste component segments. The scheme consists of 1) preparing three-dimensional models of segments, 2) orienting each segment in such a way to minimize the bounding box volume, and 3) applying hybrid genetic algorithm to pack the segments in the disposal containers. When the packing solution converges in the algorithm, it comes up with the number of containers used and the placement of segments in each container. The scheme was applied to Kori-1 reactor pressure vessel. The required number of containers calculated by the developed scheme was 24 compared to 42 that was the estimation of the prior packing plan, resulting in disposal volume savings by more than 40%. The developed method is flexible for applications to various packing problems with waste segments from different cutting options and different sizes of containers.

A preparation plan proposal of nuclear power plant decommissioning radioactive waste characterization report (원자력발전소 해체 방사성폐기물 특성보고서 작성 방안 제안)

  • Kim, Chang Lak;Lee, Sun Kee;Kim, Heon;Park, Hae Soo;Sung, Suk Hyun;Kong, Chang Sig
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.76-84
    • /
    • 2021
  • Radioactive waste generated from nuclear power plant decommissioning shall be strictly managed so that radioactive materials above the allowable limit are not leaked into the environment. Radioactive wastes shall be classified and treated for management based on characteristics such as the type of waste, physicochemical properties, nuclide concentration and radioactivity. Waste characterization report shall be prepared and submitted to the disposal facility operator to ensure that the treated waste is suitable for disposal. The disposal facility operator shall review the waste Characterization report and visit the nuclear power plant decommissioning site to ensure that the wastes are processed step by step according to the plan. The waste Characterization report may be used as input data to evaluate disposal facility safety. Domestic and foreign data are collected and reviewed to confirm the entire processes from waste generation to delivery. This paper proposes the method to prepare the waste Characterization report which contains data and information on waste characteristics, treatment facilities & method and packaging method & container.

Optimized inverse distance weighted interpolation algorithm for γ radiation field reconstruction

  • Biao Zhang;Jinjia Cao;Shuang Lin;Xiaomeng Li;Yulong Zhang;Xiaochang Zheng;Wei Chen;Yingming Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.160-166
    • /
    • 2024
  • The inversion of radiation field distribution is of great significance in the decommissioning sites of nuclear facilities. However, the radiation fields often contain multiple mixtures of radionuclides, making the inversion extremely difficult and posing a huge challenge. Many radiation field reconstruction methods, such as Kriging algorithm and neural network, can not solve this problem perfectly. To address this issue, this paper proposes an optimized inverse distance weighted (IDW) interpolation algorithm for reconstructing the gamma radiation field. The algorithm corrects the difference between the experimental and simulated scenarios, and the data is preprocessed with normalization to improve accuracy. The experiment involves setting up gamma radiation fields of three Co-60 radioactive sources and verifying them by using the optimized IDW algorithm. The results show that the mean absolute percentage error (MAPE) of the reconstruction result obtained by using the optimized IDW algorithm is 16.0%, which is significantly better than the results obtained by using the Kriging method. Importantly, the optimized IDW algorithm is suitable for radiation scenarios with multiple radioactive sources, providing an effective method for obtaining radiation field distribution in nuclear facility decommissioning engineering.

A Study on the Application of CRUDTRAN Code in Primary Systems of Domestic Pressurized Heavy-Water Reactors for Prediction of Radiation Source Term

  • Song, Jong Soon;Cho, Hoon Jo;Jung, Min Young;Lee, Sang Heon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.638-644
    • /
    • 2017
  • The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system.

The Decommissioning Information System of the Nuclear Facility (원자력시설 해체 정보관리 시스템)

  • Park, Seung-Kook;Ji, Yeon-Hee;Park, Jin-Ho;Chung, Un-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.841-843
    • /
    • 2010
  • 원자력시설의 해체사업은 국내에서는 최초로 수행된 사업이다. 해체사업 활동에서 발생되는 해체 정보 및 자료의 관리와 사업의 수행을 위해 해체 정보관리 시스템 (DECOMMIS)을 개발하였다. DECOMMIS를 이용하여 해체 작업 활동, 해체 폐기물 관리, 해체 방사선 안전관리 및 품질 관리에 관한 정보/자료를 입력, 처리, 관리하고 필요 시 출력하여 활용하였다.