• Title/Summary/Keyword: Nozzle penetration

Search Result 132, Processing Time 0.016 seconds

Control the Blow-off Characteristics of Lean Premixed Flames Utilizing a Stratified Flame Concept (성층화된 화염을 이용한 희박 예혼합화염의 날림 특성 제어)

  • Lee, Wonnam;Ahn, Taekook;Nam, Younwoo
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.11-20
    • /
    • 2012
  • The Blow-off characteristics of LPG/air lean pre-mixed flames were experimentally investigated using a double and a multiple concentric coflow burners. Experiments were conducted to understand the effects of recirculation motion, thermal interaction between flames, and stratified flame configuration. Here, the stratified premixed flame is a "new concept" of a flame that sequentially contains fuel rich, stoichiometric, and fuel lean reaction zones in a flame. The blow-off from a lean premixed flame was significantly suppressed with recirculation motion. The recirculation motion by itself, however, was not sufficient to prevent the blow-off when the equivalence ratio became low. The existence of a inner premixed flame could also help to prevent the blow-off of lean premixed flame; however, the blow-off suppression effect was rather diminished by weakened recirculation motion with the presence of inner flame. The inner flame could be separated from an outer flame on a multiple concentric coflow burner, causing recirculation motion as well as thermal interaction between flames to become effective; therefore, the blow-off was further suppressed. The lean premixed flame could be stabilized with a fuel rich premixed flames that was produced with the supply of fuel through an inner nozzle. The penetration of lean premixed gas from outside into the fuel stream produced a lifted rich premixed flame. Chemiluminescence images of OH, CH, and $C_2$ radicals confirmed the structure of a stratified premixed flame. The stable premixed flames could be obtained at the very fuel lean condition by applying the stratified premixed flame concept.

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.