• Title/Summary/Keyword: Nozzle flow

Search Result 1,832, Processing Time 0.027 seconds

Implicit/Explicit Finite Element Method for Euler Flows Inside the Optimum Nozzle (내/외재적 유한요소법을 이용한 최대추력노즐의 설계해석)

  • Yoon W. S.;Kho H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.66-72
    • /
    • 1997
  • Optimum nozzle design exploiting the method of characteristic(M.O.C) has been in application as an efficient design methodology targeting a less weighted and short expansion nozzle. This paper treats the optimum nozzle design and the analysis of the inviscid compressible flow inside. Based on traditional Rao's method, the optimum nozzle design is coded with minor modifications for the identification of the control surface across which the mass flux should be conserved. Internal flow field is simulated numerically by M.O.C and implicit/explicit Taylor-Galerkin finite element method(F.E.M) with the aid of adaptive remeshing to capture the shock wave, hence improve the accuracy. Designed and calculated flow fields due to the separate analyses show that the mass flux predicted by optimum nozzle design with M.O.C is not conserved across the control surface and the sonic line should be located upstream of the nozzle throat. Rao's optimum nozzle design methodology exaggerates the momentum thrust and tends to overemphasize the engine performance loss.

  • PDF

Factors influencing on the discharge coefficients of sonic nozzle (소닉노즐의 유출계수에 영향을 미치는 인자에 관한 연구)

  • Yu, Seong-Yeon;Lee, Sang-Yun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4027-4035
    • /
    • 1996
  • Accuracy of gas flow measurements using sonic nozzle and factors which influence on the discharge coefficients of sonic nozzle are investigated with high pressure gas flow standard measurement system. The gas flow measurement system comprises two compressors, storage tank, temperature control loop, sonic nozzle test section, weighing tank, gyroscopic scale and data acquisition system. The experiments are performed at various nozzle throat diameter and inlet pressure. Overall uncertainty of discharge coefficients is estimated to less than .+-.0.2% and most of experimental data fall into this range. Dependence of discharge coefficients on the Reynolds number is good agreement with those suggested in ISO document. The influence of swirl on the discharge coefficients becomes greater as the nozzle throat diameter is enlarged. The discharge coefficient of conical nozzle shows about 4.5% lower discharge coefficients than those of toroidal nozzle, but variation trend with Reynolds number is very similar each other and reproducibility of data is very good.

Study on Reflected Pressure in a Shock Tunnel According to the Size of a Nozzle Throat (충격관 터널의 노즐목 크기에 따른 반사압력특성 분석)

  • Lee, Jong Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.479-487
    • /
    • 2015
  • In a reflected shock tunnel, stagnation conditions of a nozzle are determined by the flow behind a reflected shock. When calculating the flow behind the reflected shock, unlike a shock tube, the flow leakage through the nozzle is to be considered. The analytical studies were done to find out the characteristics of the stagnation conditions of the nozzle with various nozzle throat size. Experiments and numerical simulations were also carried out for further understanding of the flow leakage effects. It was found that the nozzle stagnation pressure was diminished by the increase of the size of the nozzle throat. It was also found that the steady pressure in the stagnation were maintained well at the area ratio of the driven tube to the nozzle throat is 4.5.

Computational and Experimental Simulations of the Flow Characteristics of an Aerospike Nozzle

  • Rajesh, G.;Kumar, Gyanesh;Kim, H.D.;George, Mathew
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Single Stage To Orbit (SSTO) missions which require its engines to be operated at varying back pressure conditions, use engines operate at high combustion chamber pressures (more than 100bar) with moderate area ratios (AR 70~80). This ensures that the exhaust jet flows full during most part of the operational regimes by optimal expansion at each altitude. Aero-spike nozzle is a kind of altitude adaptation nozzle where requirement of high combustion chamber pressures can be avoided as the flow is adapted to the outside conditions by the virtue of the nozzle configuration. However, the thrust prediction using the conventional thrust equations remains to be a challenge as the nozzle plume shapes vary with the back pressure conditions. In the present work, the performance evaluation of a new aero-spike nozzle is being carried out. Computational studies are carried out to predict the thrust generated by the aero-spike nozzle in varying back pressure conditions which requires the unsteady pressure boundary conditions in the computational domain. Schlieren pictures are taken to validate the computational results. It is found that the flow in the aero-spike nozzle is mainly affected by the base wall pressure variation. The aerospike nozzle exhibits maximum performance in the properly expanded flow regime due to the open wake formation.

Finite Element Analysis and Material Characteristics of Fire Spray Nozzle for Ship Engine Room (선박 엔진룸의 소화용 분무노즐의 재료특성 및 유동해석)

  • Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.553-559
    • /
    • 2019
  • Various types of nozzles have been used to cope with fire in ships. However, in Korea, precise nozzles that perform fine spraying function are required for fire fighting in case of fire in a ship, and most of these nozzles depend on imports. Therefore, in this study, we developed various types of nozzles to develop the water spray nozzle for evolving fire in the engine room of the ship, and developed an optimal nozzle through flow analysis and fire test. For this purpose, we selected the materials that can satisfy the characteristics of existing nozzle materials and developed the design technology and processing technology in the nozzle considering fluid flow to achieve optimal water spraying performance. In order to develop an optimal nozzle, the flow through the finite element analysis was first analyzed and the nozzle was manufactured. As a result of flow analysis of the developed nozzle, the maximum velocity at the outlets of four holes at 0.3 MPa was about 3m/s and about 0.15 MPa. In addition, when the pressure at the inlet was 1.8 MPa, it showed the outlet speed of about 18m/s and a pressure of 1.2 MPa.

Numerical Analysis on the Flow Characteristics of Side Jet Thruster (Side Jet 발생기의 유동특성에 관한 해석)

  • Hong S. K.;Sung W. J.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.27-31
    • /
    • 2001
  • For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful device as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. In this paper, the aerodynamic characteristics of the side jet device itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. Specifically attention is paid to the effect of the chamber shape between the straight nozzle and the bent nozzle by 90 degrees on the nozzle flow properties. The thrust magnitudes are compared between the two shapes. Whether the way the nozzle is bent at the joint affects the nozzle performance is also investigated. Effects of the length and the divergence angle of the nozzle on the thrust are also quantified among three different side jet nozzles.

  • PDF

Supersonic Plug Nozzle Design and Comparison to the Minimum Length Nozzle Configuration

  • Zebbiche, Toufik;Youbi, ZineEddine
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2006
  • A method to design the contour and conception of a plug nozzle of arbitrary shape, but specified exit flow conditions is presented. Severals shapes can be obtained for exit Mach number by changing the specific heats ratio. The characteristics of the nozzle in terms of length, weight and pressure force exerted on the wall are compared to the Minimum Length Nozzle and found to be better. Our field of study is limited to the supersonic mode to not to have the dissociation of the molecules. The design method is based on the use of the Prandtl Meyer function of a perfect gas. The flow is not axial at the throat, which may be advantageous for many propulsion applications. The performance benefits of the plug nozzle compared to the Minimum Length Nozzle are also presented.

Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study

  • Rajoo, Srithar;Martinez-Botas, Ricardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.155-168
    • /
    • 2008
  • This paper investigates a variable geometry (VG) mixed flow turbine with a novel, purposely designed pivoting nozzle vane ring. The nozzle vane ring was matched to the 3-dimensional aspect of the mixed flow rotor leading edge with lean stacking. It was found that for a nozzle vane ring in a volute, the vane surface pressure is highly affected by the flow in the volute rather than the adjacent vane surface interactions, especially at closer nozzle positions. The performance of the VG mixed flow turbine has been evaluated experimentally in steady and unsteady flow conditions. The VG mixed flow turbine shows higher peak efficiency and swallowing capacity at various vane angle settings compared to an equivalent nozzleless turbine. Comparison with an equivalent straight vane arrangement shows a higher swallowing capacity but similar efficiencies. The VG turbine unsteady performance was found to deviate substantially from the quasi-steady assumption compared to a nozzleless turbine. This is more evident in the higher vane angle settings (smaller nozzle passage), where there are high possibility of choking during a pulse cycle. The presented steady and unsteady results are expected to be beneficial in the design of variable geometry turbochargers, especially the ones with a mixed flow turbine.

Numerical Study of Separated Nozzle Flows for Various Pressure Ratios (압력비에 따른 박리 노즐 유동의 수치적 해석)

  • Kim, Hui-Kyung;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.1-9
    • /
    • 2002
  • Axisymmetric separated flows in a converging-diverging conical nozzle are investigated through numerical simulations for various pressure ratios. We employ AUSM scheme for spatial derivatives and Pulliam's 2nd order subiteration time stepping scheme for implicit time integration. Numerical results indicate that the separated flow structures are very complex when compared to the simple quasi-one dimensional flow. Depending on the pressure ratio, the flow within the nozzle is either separated or non-separated. Various separated flow patterns with distinctive features are illustrated and discussed in detail.

An Experimental Study on Heat Transfer and Flow Characteristics of a Circular Impinging Jet on a Flat Plate : Effects of Nozzle Wall Thickness and Nozzle Exit Pressure (원형 제트 충돌 열전달과 유동 특성에 관한 실험적 연구 : 노즐 벽 두께와 노즐 출구 압력의 영향)

  • Yoon, Sangheon;Yang, Geunyoung;Sohn, Dong Kee;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1285-1295
    • /
    • 1999
  • An experimental study on heat transfer and flow characteristics of a circular impinging jet on a flat plate has been carried out. Of particular interests are the effects of nozzle wall thickness and nozzle exit pressure. Experimental apparatus has been designed to view heating plate coated by TLC from the opposite side of the nozzle in order to measure heat transfer rates for cases of very small nozzle to plate spacings. A visualization study of jet flows has also been performed. As the nozzle wall thickness increases at small nozzle to plate spacings, the effect of mixing is inhibited due to the confinement caused by the finite nozzle wall, consequently, heat transfer rates have been decreased. At small nozzle to plate spacings, heat transfer rates and nozzle exit pressures are increased together, therefore, enhancement of heat transfer at small nozzle to plate spacings should be considered in conjunction with the need of more fan power to generate the same Reynolds numbers.