• Title/Summary/Keyword: Nozzle Shape Optimization

Search Result 33, Processing Time 0.027 seconds

COMPUTATIONAL DESIGN OF A FLUTED NOZZLE FOR ACHIEVING TARGET AERODYNAMIC PERFORMANCE (목적 공력특성 달성을 위한 플루트 노즐 전산설계)

  • Kang, Y.J.;Yang, Y.R.;Hwang, U.C.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • As a preliminary design study to achieve target aerodynamic performance, this work was conducted on an original nozzle with 9 flutes in order to design a fluted nozzle with 12 flutes. The thrust and rolling moment of the nozzle with 12 flutes were analyzed using a CFD code according to the depth and rotation angle of the flutes. Based on this, a fluted nozzle with 12 flutes was optimized to yield the same thrust as that of the original nozzle with 9 flutes. The response surface method was applied for shape optimization of the fluted nozzle and design variables were selected to determine the depth angle and rotation angle of the flutes. An optimized shape that led to a thrust as strong as that of the original nozzle was obtained.

Design Optimization of Nozzle Shape for a Jet Fan (제트송풍기 노즐의 형상최적설계)

  • Seo Seoung-Jin;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.715-721
    • /
    • 2006
  • In the present work, nozzle shape of a jet fan is optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis. Standard $k-{\epsilon}$ model is used as a turbulence closure. Response surface method is employed as an optimization technique. The objective function is defined as maximum throw distance. Three geometric variables, i.e., length and angle of nozzle, and interval between two nozzles, are selected as design variables. As the main result of the optimization, the throw distance has been improved effectively.

Shape Optimization on the Nozzle of a Spherical Pressure Vessel Using the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화 기법을 이용한 구형 압력용기 노즐부의 형상최적화)

  • Lee, Young-Shin;Ryu, Chung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.752-757
    • /
    • 2001
  • To reduce stress concentration around the intersection between a spherical pressure vessel and a cylindrical nozzle under various load conditions using less material, the optimization for the distribution of reinforcement has researched. The ranked bidirectional evolutionary structural optimization(R-BESO) method is developed recently, which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO. In this paper, the optimized intersection shape is sought using R-BESO method for a flush and a protruding nozzle. The considered load cases are a radial compression, torque and shear force.

  • PDF

A Study on Reliability of Kriging Based Approximation Model and Aerodynamic Optimization for Turbofan Engine High Pressure Turbine Nozzle (터보팬 엔진 고압터빈 노즐에 대한 크리깅 모델 기반 근사모델의 신뢰도 및 공력성능 최적화 연구)

  • Lee, Sanga;Lee, Saeil;Kang, Young-Seok;Rhee, Dong-Ho;Lee, Dong-Ho;Kim, Kyu-Hong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.32-39
    • /
    • 2013
  • In the present study, three-dimensional aerodynamic optimization of high pressure turbine nozzle for turbofan engine was performed. For this, Kriging surrogate model was built and refined iteratively by supplying additional experimental points until the surrogate model and CFX result has effective difference on objective function. When the surrogate model satisfied this reliability condition and developed enough, optimum point was investigated. Commercial program PIAnO was used for optimization process and evolutionary algorithm was used for searching optimum point. As a result, difference between estimated value from Kriging surrogate model and CFD result converges within 0.01% and the optimized nozzle shape has 0.83% improved aerodynamic efficiency.

Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis (Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구)

  • Lee, Hyungyu;Lee, Jungsoo;Kim, Donghwa;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

Aerodynamic Optimal Design of Nozzle Contour for Supersonic Exit Mach Number

  • Mon, Khin Oo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.335-338
    • /
    • 2010
  • A recent study for tracing the profiles of supersonic axisymmetric Minimum Length Nozzle with uniform and parallel flow at the exit section, the stagnation temperature is taken into account. The aim of this work is to add optimization algorithm to the supersonic nozzle design in order to get the optimum nozzle shape. The comparisons of the nozzle contours based on the method of characteristics are presented. The specific heats and their ratio vary with the stagnation temperature when this temperature of a perfect gas increases. An application is made for air in a supersonic nozzle.

  • PDF

Design of Supersonic Impulse Turbine Nozzle with Asymmetric Configuration using the Optimal Method (최적화기법을 이용한 초음속 충동형 터빈 노즐의 비대칭 설계)

  • Jeong, Soo-In;Choi, Byoung-Ik;Jeong, Eun-Hwan;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.61-65
    • /
    • 2011
  • In this paper, the nozzle design with asymmetric configuration using the optimal method is used in order to improve the under- and over-expansion problem of the flow at the supersonic turbine nozzle. For the design of nozzle contour, 8 design variables are selected and the total-to-static efficiency from the nozzle inlet to the wake outlet is considered as the objective function to be maximized. The Fluent6.3 and the iSIGHT-FD program are used for calculation of nozzle flow and design optimization respectively. RBF(Radial Basis Function) method is chosen for approximate optimization algorithm. It is shown that the static efficiency of improved nozzle design increases 1.35% and loss coefficient decreases 19.85% as compared to baseline design.

  • PDF

Optimization of Lace Tube with Gray Theory and Design of Experiment (회색 관계 이론과 실험계획을 이용한 Lance Tube Nozzle 최적화)

  • Jeong, Ilkab;Lee, Dongmyung;Lee, Sangbeom;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1001-1006
    • /
    • 2016
  • As consumption of energy is increasing rapidly, energy saving is emphasized in nowadays. Thermal power plant occupies a large proportion in various type of power plant. Major causes of decreased power generation efficiency on thermal power stations is deposition of fly ash. Soot Blower is a facility to remove the ash which is deposited outside of tube by steam blowing on boiler. Residual stream which caused by lance tube in soot blower cannot be discharged steam effectively in lance tube causes reducing the thickness of lance tube. On the contrary, increasing discharge ratio of steam, lance tube cannot sustain proper pressure to remove ash on tube. This study suggests increasing discharge ratio of steam with proper pressure to remove ash on tube by optimization on shape of lance tube nozzle. To optimize shape of nozzle, discharge ratio and maximum blowing pressure on nozzle is selected as object functions. Diameter of nozzle, distance between nozzles, angle of nozzle and gap between nozzle is selected as design parameters. Then the design of experiment (DOE) with an orthogonal array is performed to analyze the effect of design parameters. And grey relational analysis and analysis of mean (ANOM) is performed to optimize shape of lance tube.

Optimum Design of Air Nozzle System for Automatic Car Wash Machine using CFD and DOE (CFD 및 DOE를 활용한 자동세차기 노즐시스템의 최적설계)

  • Jung, Uk-Hee;Choi, Young-Seok;Kwon, Oh-Myoung;Lee, Kyoung-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.34-40
    • /
    • 2007
  • An optimization approach is investigated for the design of new nozzle system in a automatic car wash machine. Three-dimensional computational fluid dynamics and design of experiment methods have been employed to know the mutual interaction between the nozzle shape in the automatic car wash machine and the airflow velocity distribution on the vehicle surface. The performances of air nozzle system were defined as the velocity magnitude and the uniformity of the velocity on the surface of the car. Predicted jet velocity distributions for the optimized geometry were compared with experimental data and the comparisons showed generally good agreements. Also, the performance of the dryer was improved with the optimized results.

ADJOINT METHOD FOR CONTROLLED CAVITATION INVERSE NOZZLE DESIGN

  • Petropoulou, S.;Gavaises, M.;Theodorakakos, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • A mathematical methodology is proposed for designing nozzle hole shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an adjoint algorithm. The adjoint formulation for the N-S equations is presented while variation of the turbulence viscosity is not taken into account during the geometry modifications. The sensitivities are calculated in a mode independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localized region at the hole inlet producing cavitation, is parameterised using its radius of curvature, while a cost function is formulated to eliminate the negative pressures present at this location. Sensitivity derivatives are used to assess the dependence of the localized region on the minimum pressure, and to drive the geometry to the targeted shape. The results show that the computer model can provide nozzle hole entry shapes that produce predefined flow characteristics, and thus can be used as an inverse design tool for nozzle hole cavitation control.