• 제목/요약/키워드: Nozzle Pressure Ratio

검색결과 394건 처리시간 0.028초

디퓨저 확대각이 임계노즐의 임계압력비에 미치는 영향 (The Influence of the Diffuser Divergence Angle on the Critical Pressure of a Critical Nozzle)

  • 김재형;김희동;박경암
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.131-134
    • /
    • 2002
  • Compressible gas flow through a convergent-divergent nozzle is choked at the nozzle throat under a certain critical pressure ratio, and then being no longer dependent on the pressure change in the downstream flow field. In practical, the flow field at the divergent part of the critical nozzle can affect the effective critical pressure ratio. In order to investigate details of flow field through a critical nozzle, the present study solves the axisymmetric, compressible, Wavier-Stokes equations. The diameter of the nozzle throat is D=8.26mm and the half angle of the diffuser is changed between $2^{\circ}\;and\;10^{\circ}$ Computational results are compared with the previous experimental ones. The results obtained show that the divergence angle is significantly influences the critical pressure ratio and the present computations predict the experimented discharge coefficient and critical pressure ratio with a good accuracy. It is also found that a nozzle with the half angle of $4^{\circ}$ nearly predicts the theoretical critical pressure ratio.

  • PDF

2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구 (A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection)

  • 임채민;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

구심터빈의 노즐 내부 유동에 대한 시험 연구 (An Experimental Study on Flow in the Nozzle of a Radial Turbine)

  • 강정식;임병준;안이기
    • 한국유체기계학회 논문집
    • /
    • 제13권1호
    • /
    • pp.35-41
    • /
    • 2010
  • Experimental study on the flow field inside the nozzle for radial turbine was performed. At design point, the pressure is high and the Mach number is low at the pressure side of the nozzle inlet semi-vaneless space as the flow turns through the nozzle vanes. As the flow accelerates through the nozzle passage to the throat the pressure level at the pressure and suction sides becomes similar. The flow continued accelerating from the throat to the inlet of turbine wheel and the pressure field became uniform in the circumferential direction in the vaneless space. In high expansion ratio condition, strong favorable pressure gradient band region occurred just after the throat in the semi-vaneless space in the circumferential direction and the pressure became uniform in the circumferential direction after this band. In low expansion ratio condition, core flow acceleration is dominant after the throat and this non-uniform pressure field reached to the inlet of turbine wheel.

핀틀 노즐형 로켓 모타의 추력 조절 성능에 관한 연구 (Thrust modulation performance analysis of pintle-nozzle motor)

  • 김중근;박종호
    • 한국항공우주학회지
    • /
    • 제37권4호
    • /
    • pp.392-398
    • /
    • 2009
  • 노즐의 팽창 조건에 따라 적용할 수 있는 이론적인 추력을 구하고 구해진 추력식을 이용하여 고체 추진기관의 추력을 조절하는 핀틀 추진기관의 설계변수, 즉 압력지수, 최소 작동압력, 대기압, 소화압력이 추력 조절 성능에 미치는 영향을 분석하였다. 분석결과 압력지수가 클수록, 최소 작동압력이 낮을수록, 대기압이 높을수록, 그리고 소화압력이 높을수록 핀틀로 노즐목 면적 크기를 조금만 조절하여도 낮은 연소관 압력 조절 범위에서 충분히 원하는 추력비를 얻을 수 있음을 확인하였다.

노즐 오리피스 형상 및 형상비가 디젤과 바이오디젤 연료의 노즐 내부 및 외부 유동특성에 미치는 영향 (Effect of Nozzle Orifice Shape and Nozzle Length-to-Diameter Ratio on Internal and External Flow Characteristics of Diesel and Biodiesel Fuel)

  • 박수한;서현규;이창식
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.264-272
    • /
    • 2007
  • The aim of this study is to investigate the effects of nozzle orifice shapes and the nozzle length-to-diameter ratio(L/D) on the nozzle cavitation formation inside the orifice and the external flow pattern. The nozzle used in this work was tested the taper orifice nozzle and the rectangular orifice nozzle which was made from the transparent acrylic acid resin. For studying the effect of the nozzle L/D ratio, it was used to three L/D ratios of 3.33, 10, and 20. The cavitation flow of nozzle was visualized by using the ICCD camera and optical system. This work revealed that the flow rate and discharge coefficient($C_d$) of the taper orifice nozzle was larger than those of the rectangular orifice nozzle at the same injection pressure. The cavitation flow was observed in the nozzle orifice at the low injection pressure and the breakup of liquid jet was promoted as the L/D ratio is decreased. The cavitation of biodiesel fuel was formed at the lower injection pressure than that of diesel fuel because of higher viscosity and density.

Mixer-Ejector 노즐 유동장에 관한 수치해석 (Computational Analysis of the Flowfield of a Mixer-Ejector Nozzle)

  • Park, Yun-Ho
    • 한국추진공학회지
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 2002
  • 본 연구에서는 2차원의 압축성 Navier-Stokes 코드를 개발하여 mixer-ejector 노즐의 유동장 해석을 다양한 덕트와 노즐 면적비 및 노즐 압력비에 대하여 계산을 수행하였다. 덕트와 노즐 면적비 계산에서는 먼저 효율적인 2차 유동의 유입을 위한 최적의 면적비가 있음을 볼 수 있었다. 높은 면적비에서는 입구 자유유동의 적절한 혼합없이 mixing duct를 그대로 통과하는 것을 볼 수 있었고, 낮은 면적비에서는 제트의 경계가 유입 유동에 장애물로 작용하는 것을 볼 수 있었다. 노즐 압력비의 계산에 있어서는 shroud 벽면과 shock cell structure 간에 상호작용이 작다면 유입유량은 압력비에 따라 증가하는 것을 볼 수 있었다.

음속 노즐의 임계 압력비에 대한 저 레이놀즈수의 영향 (Evaluation of Critical Pressure Ratios Sonic Nozzle at Low Reynolds Numbers)

  • 최용문;박경암;차지선;최해만;윤복현
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1535-1539
    • /
    • 2000
  • A sonic nozzle is used as a reference flow meter in the area of gas flow rate measurement. The critical pressure ratio of sonic nozzle is an important factor in maintaining its operating condition. ISO9300 suggested the critical pressure ratio of sonic nozzle as a function of area ratio. In this study, 13 sonic nozzles were made by the design of ISC9300 with different half diffuser angles of 2。 to 8。 and throat diameters of 0.28 to 4.48 mm. The test results of half diffuser angles below 8。 ar quite similar to those of ISO9300. On the other hand, the critical pressure ratio for the nozzle of 8。 decreases by 5.5% in comparison with ISO9300. However, ISO9300 does not predict the critical pressure ratio at lower Reynolds numbers than 10(sup)5. Therefore, it is found that it is a better way for the flow of low Reynolds number to express the critical pressure ratio of sonic nozzle as a function of Reynolds number than area ratios. A correlation equation of critical pressure is introduced with uncertainty $\pm$3.2 % at 95% confidence level.

Enlarge duct length optimization for suddenly expanded flows

  • Pathan, Khizar A.;Dabeer, Prakash S.;Khan, Sher A.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.203-214
    • /
    • 2020
  • In many applications like the aircraft or the rockets/missiles, the flow from a nozzle needs to be expanded suddenly in an enlarged duct of larger diameter. The enlarged duct is provided after the nozzle to maximize the thrust created by the flow from the nozzle. When the fluid is suddenly expanded in an enlarged duct, the base pressure is generally lower than the atmospheric pressure, which results in base drag. The objective of this research work is to optimize the length to diameter (L/D) ratio of the enlarged duct using the CFD analysis in the flow field from the supersonic nozzle. The flow from the nozzle drained in an enlarged duct, the thrust, and the base pressure are studied. The Mach numbers for the study were 1.5, 2.0 and 2.5. The nozzle pressure ratios (NPR) of the study were 2, 5 and 8. The L/D ratios of the study were 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Based on the results, it is concluded that the L/D ratio should be increased to an optimum value to reattach the flow to an enlarged duct and to increase the thrust. The supersonic suddenly expanded flow field is wave dominant, and the results cannot be generalized. The optimized L/D ratios for various combinations of flow and geometrical parameters are given in the conclusion section.

노즐 압력비와 충돌면까지의 거리 변화에 따른 초음속 충돌 제트 유동의 진동 특성 (Oscillatory Features of Supersonic Impinging Jet Flows; Effects of the Nozzle Pressure Ratio and Nozzle Plate Distance)

  • 김성인;박승오;이광섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.154-159
    • /
    • 2004
  • Numerical simulations of supersonic impinging jet flows are carried out using the axisymmetric Navier-Stokes code. This paper focuses on the oscillatory flow features associated with the variation of the nozzle pressure ratio and nozzle-to-plate distance. Frequencies of the surface pressure oscillation from computational results are in accord with the measured impinging tones for various cases of nozzle-to-plate distance. The variation of this frequency with distance show a staging behavior. Computed results for the case of nozzle pressure ratio variation for a fixed nozzle-to-plate distance also demonstrate a staging behavior. These two seemingly different staging behaviors are found to obey the same frequency-distance characteristics when the frequency and the distance are normalized by using the length of the shock cell.

  • PDF

Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구 (A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept)

  • 정성재;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF