• Title/Summary/Keyword: Nozzle Pressure Ratio

Search Result 394, Processing Time 0.034 seconds

Numerical Study on Under-Expanded Jets through a Supersonic Nozzle(II) (초음속 노즐을 통하는 부족팽창 제트에 관한 수치계산적 연구 (2))

  • Kim, Hui-Dong;Sin, Hyeong-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1994-2004
    • /
    • 1996
  • Numerical calculation was applied to supersonic under-expanded jets, and compared with the results of a linear theory and other experiments. TVD difference scheme was employed to solve 2-dimensional and axisymmetric inviscid Euler equation. This paper aims to explore the effects of angle of divergence and design Mach number of nozzle on the structure of under-expanded jets. The angle of divergence was varied from 0 to 20 deg. The results show that the length of the first cell of the under-expanded jets decreases and Mach disk generates at lower nozzle pressure ratio, if the angle of divergence or design Mach number of nozzle increases. The distance from the nozzle exit to Mach disk in 2-dimensional jets becomes much larger than that of axisymmetric jets, and the widths of the jet boundary and the barrel shock wave are also larger than that of axisymmetric jets. Calculation results indicate that the configuration of the under-expanded jets is strongly dependent on the nozzle pressure ratio.

A Study of The Flow Characteristics through a Supersonic Dual Bell Nozzle (초음속 2단 벨노즐(SDBN)을 통하는 유동특성에 관한 연구)

  • 김희동;구병수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.70-77
    • /
    • 2000
  • Supersonic Dual Bell Nozzle (SDBN) is an altitude-adaptive propulsion nozzle achieved only by a nozzle wall inflection. In order to investigate the altitude adaptive capability and the effectiveness of this nozzle concept, the present study addresses a computational work of the flow through SDBN. Several types of the SDBNs are tested for a wide range of the pressure ratio which covers from an over-expended flow to a fully under-expended flow at the exit of the SDBN. Axisymmetric, compressible, Wavier-Stokes equations are numerically solved using a fully implicit finite volume differencing scheme. The present computational results reveal that the base nozzle length affects the shock wave system occurring inside SDBN. For a quit wide range of the pressure ratio the flow separation occurs at the nozzle inflection point. It is found that the maximum thrust coefficient is obtainable for the correct expansion state at the exit of SDBN.

  • PDF

Computation of a Two-dimensional Nozzle Flow with the Variation of Pressure and Length Ratios (수치계산에 의한 2차원 초음속 노즐에서 압력비와 길이비에 따른 흐름 특성)

  • Kwon, Soon-Duk;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • The Navier-Stokes equations are numerically solved for a two-dimensional small nozzle with the area ratio of 1.8 between the throat and the exit. The shock structures are verified inside the nozzle and near the exit varying with the pressure ratio and the length of the diverging part, respectively. Especially the irregular patterns in the pressure distribution near the throat are analyzed based on the geometric characteristics. It is found that there are similar phenomena in the shock wave structure between the pressure ratio and the length changes. Also there exists a normal shock just between two different oblique shocks crossing each other in special cases.

The Flow Characteristics with Variation of Nozzle-to-nozzle Angles on Unventilated Dual Jests (이중제트에서 노즐과 노즐사이의 각도 변화에 따른 유동 특성)

  • Kim, Dong-Keon;Kim, Moon-Kyoung;Yoon, Soon-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1231-1239
    • /
    • 2008
  • The characteristics of flow on unventilated dual jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. All measurements were made over a range of nozzle-to-nozzle angles from $0^{\circ}$ to $25^{\circ}$. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. It was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. As nozzle-to-nozzle inclined angles were decreased, it was found that the spanwise turbulent intensity is greater than the streamwise turbulent intensity in the merging region. In the combined region, the velocity of dual jets agree well with that of single jet, but the turbulence intensity of dual jets not agree with that of single jet.

The Compressible flow structure behind the exit of a two-dimensional supersonic micro-nozzle (2차원 소형 초음속 노즐 하류의 압축성 유동 구조 해석)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.323-326
    • /
    • 2006
  • This paper presents the computational results for the two-dimensional compressible non-reacted flow in a converging-diverging micro thrust nozzle of which the ratio of exit to throat width (0.541 in.) is 1.8. The RNG model is applied to calculate the turbulence by loading the standard coefficients. The results agreed very well with the experiments in the view of the shock structure and the pressure distribution at the various pressure ratios between the stagnation and the environmental states. The plume structures are also discussed on the view of the shock-cell structure.

  • PDF

A Turbulent Bounbary Layer Effect of the De-Laval Nozzle on the Combustion Chamber Pressure (De-Laval 노즐의 난류 경계층 유동이 연소실 압력에 미치는 영향)

  • 장태호;이방업;배주찬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.635-644
    • /
    • 1986
  • A Compuressible turbulent boundary layer effect of the high temperature, accelerating gas flow through the De-Laval nozzle on combustion chamber pressure is numerically investigated. For this purpose, the coupled momentum integral equation and energy integral equation are solved by the Bartz method, and 1/7 power law for both the turbulent boundary layer velocity distribution and temperature distribution is assumed. As far as the boundary layer thicknesses are concerned, we can obtain reasonable solutions even if relatively simple approximations to the skin friction coefficient and stanton number have been used. The effects of nozzle wall cooling and/or mass flow rate on the boundary layer thicknesses and the combustion chamber pressure are studied. Specifically, negative displacement thickness is appeared as the ratio of the nozzle wall temperature to the stagnation temperature of the free stream decreases, and, consequently, it makes the combustion chamber pressure low.

Shape Optimization on the Nozzle of a Spherical Pressure Vessel Using the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화 기법을 이용한 구형 압력용기 노즐부의 형상최적화)

  • Lee, Young-Shin;Ryu, Chung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.752-757
    • /
    • 2001
  • To reduce stress concentration around the intersection between a spherical pressure vessel and a cylindrical nozzle under various load conditions using less material, the optimization for the distribution of reinforcement has researched. The ranked bidirectional evolutionary structural optimization(R-BESO) method is developed recently, which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO. In this paper, the optimized intersection shape is sought using R-BESO method for a flush and a protruding nozzle. The considered load cases are a radial compression, torque and shear force.

  • PDF

Characteristics of Supersonic Nozzle and Jet Impingement (초음속 노즐과 벽면 충돌제트의 유동특성)

  • Hong, Seung-Kyu;Lee, Kwang-Seop;Sung, Woong-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.256-262
    • /
    • 2001
  • Viscous solutions of supersonic side jet nozzle and supersonic jet impinging on a flat plate are simulated using three-dimensional Navier-Stokes solver. For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful devise as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. The aerodynamic characteristics of the side jet devise itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. On the other hand, the jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. As the plate is placed close to the nozzle, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. The amplitude of wall pressure fluctuations subsides as the plate/nozzle distance increases, and the frequency of the wall pressure is estimated on the order of 10.0 KHz. Objectives of this paper are to show accurate simulation of nozzle flow itself and to demonstrate the jet flow structure when the jet interacts with a wall at a close range.

  • PDF

A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle (MILD 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.413-419
    • /
    • 2013
  • The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of venturi nozzle geometrical parameters, nozzle position, nozzle gap between high pressure air nozzle and venturi nozzle, and with the change of high pressure nozzle inlet velocity. The entrainment flow rate for the case with the high pressure air nozzle attached at the exhaust gas wall has relatively small change with the change of nozzle gap. That for the case with the high pressure air nozzle exposed to the exhaust gas has monotonically increase with the change of nozzle gap. The flow rate ratio of entrainment flow rate has considerably increase tendency with relatively lower air inlet velocity, on the other hand, that with relatively higher air inlet velocity could be seen relatively small increase.

Study of the Shock Structure of Supersonic, Dual, Coaxial, Jets (초음속 이중 동축 제트유동에서 발생하는 충격파 구조에 관한 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.417-422
    • /
    • 2001
  • The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  • PDF