• Title/Summary/Keyword: Nozzle Position

Search Result 212, Processing Time 0.026 seconds

A Method for Optimizing Building Position of Model to Minimize Interference between Nozzles in FDM with Dual-nozzles (듀얼 노즐 FDM 프린터에서 노즐 간의 간섭을 최소화하는 모델의 빌드 방향 최적화를 위한 방법)

  • Kim, Tae-young;Lee, Yong-gu
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2017
  • 3D printing techniques can be used in various application fields and many researches have been reported. FDM (Fused Deposition modeling) can make multi-material or multi-color models with the simultaneous use of two or more filaments. In a dual-nozzle FDM printers, while the active nozzle is working, the remaining nozzle will be idle. The remaining molten resins inside an idle nozzle can ooze out unwantedly. The spill over from the resting nozzle produces unwanted remaining on the fabricated product. In this research, we suggest a method for optimizing building position of a model to minimize the unwanted spill-over that could possibly contaminate the final product. The method is based on minimizing the two intersection volumes. The first intersection volume is obtained by intersecting the volume defined by the first material and the Minkowski sum between the volume of the first material and the vector obtained by subtracting the center point of the first nozzle from the center point of the second nozzle. The second intersection volume can be obtained by reversing the role of the first and second volumes and nozzles. Some results obtained from the implementation using the Parasolid (Siemens) geometric modeling kernel is presented.

Effect of Gun Nozzle Geometry, Increase in the Entrance Convergent Section Length and Powder Injection Position on Cold Sprayed Titanium Coatings

  • Sakaki, Kazuhiko;Shinkai, Shuhei;Ebara, Nobuharu;Shimizu, Yasuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.238-239
    • /
    • 2006
  • Nozzle geometry influences gas dynamics making sprayed particle behavior one of the most important parameters in cold spray process. Gas flows at the entrance convergent section of the nozzle takes place at relatively high temperature and are subsonic. Thus, this region is a very suitable environment for heating spray particle. In this study, numerical simulation and experiments were conducted to investigate the effect of nozzle contour, entrance geometry of nozzle and powder injection position at nozzle on the cold spray process. The process changes were observed through numerical simulation studies and the results were used to find a correlation with coating properties.

  • PDF

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (II) - Effect of Molten Metal Control by Venturi Nozzle in Overhead Position - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (II) - 벤투리 노즐의 위보기 자세 용융금속제어 효과 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.58-63
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was compared with existing CP-type nozzle by TIG pulse welding in overhead position. As a result, CP-type occurs the wormholes in the overhead position, but the Venturi-type without the pore and formed a good bead appearance.

A Study on the Wall Thinning Range according to modified Extraction Nozzle Design in High Pressure Feedwater Heater (고압 급수가열기 추기노즐 설계변경에 따른 감육 범위 연구)

  • Park, Sang-Hoon;Yoo, Il-Gon;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.847-852
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feed-water heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare wall thinning range according to change entrance nozzle diameter and position with reference numerical analysis model's wall thinning range, various numerical analysis models applied. In case of changing diameter, four different diameter is applied. And a side of nozzle position, two different position-vertical type and parallel type-is applied. And then this paper describes operation of numerical analysis which is composed similar condition with real feed water heater. In conclusion, this study shows effective design for shall wall thinning by changing nozzle diameter and position.

  • PDF

A study on internal flow field of supersonic nozzle by needle type pintle position (Needle형 Pintle의 위치에 따른 초음속 노즐 내부 유동장 연구)

  • Lee, Ji-Hyung;Kim, Jung-Keun;Chang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • Internal flow field of supersonic nozzle with pintle, which control thrust of solid rocket motor, is very complicated by pintle tip shape and contour of nozzle. For studying of pintle nozzle performance by effects of internal flow field variation with pintle position, cold flow test and numerical analysis about needle type pintle shape were performed and results were presented in this paper. As the results of this study, three types of internal shocks exists in the pintle nozzle and oblique shock is oscillated by pintle position

  • PDF

A Study on the Flow Characteristics of the Flue Gas Recirculation with the Change of Venturi Tube Shape (벤튜리관 형상에 따른 배기가스 재순환 유동 특성에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Kim, Dae Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2019
  • Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in automobile engines and incinerators. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal location of air nozzle exit position by changing its position in a venturi tube for the maximum flue gas recirculation effect. In addition, the flue gas recirculation characteristics with a cone at the exit of air nozzle was elucidated with flue gas recirculation flow rate ratio and mixed gas exit temperature. When the air nozzle exit position was changed from the start position (z = 0) to the end position (z = 0.6m) of the exhaust gas recirculation exit pipe, the change of streamline and temperature distribution in the venturi tube was observed. The exhaust gas recirculation flow rate and the average temperature at the mixed gas exit position was quantitatively compared. From the present study, the optimal location of air nozzle exit position for the maximum flue gas recirculation flow rate ratio and maximum mixed gas exit temperature is z = 0.15m (1/4L). In addition, when the cone is installed at the outlet of the air nozzle, the velocity of the air nozzle outlet is increased, the flue gas recirculation flow rate was increased by about 2 times of the flow rate without cone, and the mixed gas exit temperature is increased by $116^{\circ}C$.

Movable Nozzle Performance Analysis by Using ADAMS (ADAMS를 이용한 가동 노즐 성능 평가 기법)

  • Kim, Joung-Keun;Jang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.30-35
    • /
    • 2009
  • Effective-pivot effects on the thrust vector control performance of the flexible seal nozzle to be used to control the flight direction of missile were investigated by computer simulation. $2^3$-Design of experiment technique was applied and ADMAS was used for the surrogate technique. As a result, radial pivot position had more influence upon the nozzle actuating performance than axial pivot position. Connecting method of actuator was also important factor in determining effective-pivot effects on the thrust vector control performance of the flexible seal nozzle.

Experimental Analysis on the Performance Characteristics of an Ejector according to Inlet Pressure and Nozzle Position (운전조건 및 노즐위치에 따른 이젝터 성능특성에 관한 실험적 연구)

  • Lee, Jae Jun;Jeon, Yongseok;Kim, Sun Jae;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.263-268
    • /
    • 2015
  • In this study, the performance of an ejector in the refrigeration cycle was experimentally studied using R600a. The performance of the ejector is analyzed according to the inlet pressure and nozzle position. The increase in the primary nozzle pressure decreased the pressure difference across the ejector. In the low entrainment region, the increased suction flow pressure led to an increase in the pressure difference. In the high entrainment region, the pressure difference was inversely proportional to the suction pressure. The effects of nozzle position ($L_n$) were also analyzed and for $L_n<0$, the decreased suction chamber volume led to a large pressure drop with the small increase in the suction mass flow rate. For $L_n>0$, the increased $L_n$ disturbed the primary nozzle flow and thus an increase in the primary nozzle flow increased the pressure lifting effect. In contrast, the increased suction mass flow rate decreased the pressure difference. When the nozzle outlet was located at the mixing part entrance ($L_n=0$), the ejector showed the highest pressure lifting effect.

A Study on the Steady-State Characteristics of Symmetric Pintle Nozzle with Varying Position of Pintle and Change in Altitude (대칭형 핀틀 노즐의 핀틀 위치와 고도 변화에 대한 정상상태 특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Jung, Eunhee;Lee, Daeyeon;Choi, JaeSung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • In this study, numerical simulations were performed to investigate the steady-state characteristics of a symmetric pintle nozzle by varying the position of the pintle and the altitude. The pintle nozzle shape was used in a linear pintle nozzle that had been analyzed prior to the study, and the boundary conditions of the chamber were considered to be according to the propellant burn-back characteristics. A software was used to perform a verification analysis of the square nozzle, pintle nozzle, and high-altitude conditions with an appropriate analytical technique. The pintle position had three different nozzle throat area conditions-: fully closed, half open, and fully open, and the altitude was set at 0, 5, and 20 km. The study compared the thrust, pintle drive load, and static stability at each condition.