• Title/Summary/Keyword: Nozzle Injection Pressure

Search Result 331, Processing Time 0.028 seconds

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (2) Comparison of Spray Uniformity and Atomization Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (2) 분무 균일도 및 미립화 특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2020
  • A single spray plume is the basic unit of the entire spray plume and is an important factor in understanding the spray characteristics. However, since the multi-hole GDI injector has a narrow spray angle, the superposition of the spray plumes occurs severely. Therefore, the spray uniformity and the spray atomization characteristics of a single spray plume were analyzed in this study using a single-hole GDI injector. Five single-hole GDI injectors with different nozzle hole diameters were used in the experiment. The uniformity of the spray was evaluated through the analysis of the spray pattern images. In addition, the atomization characteristics were compared using the diameter distribution of the spray droplets obtained using PDPA. As a result, the larger diameter of the nozzle hole, the less uniformity of the spray, and the injection pressure did not have a significant effect on the spray uniformity. It is judged that the surface roughness of the injector has a greater effect on spray uniformity than the diameter of the nozzle hole. Also, the size of the spray droplets increased sharply when the diameter of the nozzle hole was 230 ㎛.

A study on Spray Characteristic of Fuel Injection Nozzle with Geometrical Shape Changes of Needle Valve (연료분사노즐의 니들밸브 형상변화에 따른 분무특성에 관한 연구)

  • 채재우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 1987
  • The experimental study, using constant pressure injection system, is carried out to investigate the effect of the geometrical shape changes of the needle valve of the effective flow area, the spray angle and the Sauter's Mean Diameter according to needle valve lift for a pintle-type injection nozzle. The results are as follows: 1) With the increase of the needle valve lift, the effective flow area is increased, the spray angle is at first increased and later decreased, and the Sauter's Mean Diameter is decreased. 2) It is also shown that the spray angle is maximum at the rapidly increased region of the effective flow area.

  • PDF

A Study on the Development of an Automatic Multi-Nozzle Injection Molding Machine (Multi-Nozzle Injection Molding Automatic Machine 개발에 관한 연구)

  • Lee, Jong-Hyung;Kim, Jung-Hwan;Yi, Chang-Heon;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Chun-Kon;Kwon, Yung-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.123-128
    • /
    • 2007
  • The demand for the precision rubber products has been rapidly increasing with the recent growth of industries. And the requirement for the productivity and the quality calls out for the injection molding machines with the precision machining ability as well as the high productivity. Especially modern automobile industry is in urgent need of developing injection molding machines for the high quality rubber products with high productivity. And the inability of the domestic companies to meet the standards causes importing foreign machines and as a result spending good amount of dollars. It is extremely important to develop competitive machines and strengthen the infrastructure of the related industries. In this paper the functions and the structure of a automatic multi-nozzle injection molding machine has been studied to set up a proper test system for the precision rate and the reliability of the machines, which can help build the machines to meet the request of the industry.

  • PDF

Adaptive Control Based Velocity and Pressure Control for Injection Molding Cylinder (사출성형 실린더의 적응제어 방식 속도 및 압력제)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with the issue of model reference adaptive control strategy to control the injection molding machine. Prior to controller design, a pair of transfer functions are derived for the injection and dwelling process based on mathematical models of components. As external disturbances to examine the robustness of the proposed controller, nozzle clogging and contraction of molded objects are considered and realized by proportional valve. The overall simulation system, consisting of hydraulic components, controller and sensors, is implemented using the components of commercial software SimulationX. The simulation results confirm the proposed scheme's efficiency and robustness.

An Experimental Study on the Characteristics of Twin Spray Ejected from Two Swirl Spray Nozzles (두개의 와류분무 노즐로부터 분사되는 이중분무의 분무특성에 관한 실험적 연구)

  • 김인구;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.359-372
    • /
    • 1988
  • Characteristics of twin spray ejected from two swirl spray nozzles were studied experimentally. By using a patternator for measuring volumetric flux of drop flow at various locations inside the spray, variation of the twin spray pattern along the axial direction was studied with changing the injection pressure and the distance between the nozzles. The general findings from the experiments are as follows: (i) as axial distance from the nozzles increases, the spray pattern in x-z plane which contains both nozzles changes significantly. On the other hand the spray pattern in y-z plane which passes the midpoint between two nozzles remains almost unchanged at outer region as axial distance and injection pressure vary; (ii) at the downstream of the twin spray with spray interaction, the maximum volumetric flux in y-z plane (q$_{max}$)$_{y}$, has tendency to become larger than that of x-z plane (q$_{max}$)$_{x}$, due to a characteristic(hollow cone shape) of the constituting swirl sprays, and this trend is pronounced at higher injection pressure since the cross-section of each single spray remains hollow at the longer axial distance from each nozzle with higher injection pressure; (iii) at a certain axial distance from the nozzles, the cross-sectional shape of the boundary of the twin spray tends to be circular similar to that of the single spray with twice the flow-rate, and that distance is not proportional to the distance between two nozzles; (iv) though there are some collisions between droplets from each nozzles of twin spray, in present experimental range, the flow pattern of gas including the entrainment effect plays the key role in spray interaction.n.ion.n.

Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System (2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Lee, Jung-Hyup;Kim, Min-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

Development of two-component polyurethane metering system for in-mold coating (인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발)

  • Seo, Bong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

Analysis of Controlling the Size of Microbubble in DAF (DAF에서 기포의 크기제어 및 영향분석)

  • Dockko, Seok;Kwak, Dong-Heui;Kim, Young-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.235-241
    • /
    • 2004
  • The dissolved air flotation (DAF) process has been widely used for removing suspended solids with low density in water. It has been known as measuring the size of microbubbles precisely which move upward rapidly in contact zone is difficult. In this study particle counter monitoring (PCM) method is used to measure the rising microbubble after injection from a nozzle. Size and distribution curve of microbubbles are evaluated at different conditions such as pressure drop at intermediate valve, length of pipeline between saturation tank and nozzle and low pressure. And the efficiency is also checked when it collides with different size floc. The experimental results show the following fact. As the final pressure drop occurred closer to a nozzle, the bubble size became smaller. And small bubble collides with large floc as well as small one because of its physical characteristic. However large bubble collides well with large floc rather than small one since hydrodynamic flow in streamline interferes to collide between two. With performing computational process by mathematical model we have analyzed and verified the size effect between bubble and floc. Collision efficiency is the highest when P/B ratio shows in the range of 0.75 < P/B ratio ($R_{particle/Rbubble}$) < 2.0.

Ultrasonic Measurement of Gap between Calandria Tube and Liquid Injection Nozzle in CANDU Reactor (초음파를 이용한 중수로내 칼란드리아관과 원자로 정지물질 주입관과의 간격 측정)

  • Sohn, Seok-Man;Kim, Tae-Rong;Lee, Jun-Sin;Lee, Young-Hee;Park, Chul-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.834-839
    • /
    • 2001
  • Calandria tube wrapping each pressure tube is one of the key structural components of CANDU reactor(Calandria) which is consisted of many pressure tubes containing nuclear fuel assemblies. As the Calandria tube(made of zirconium alloy) is sagging due to its thermal and irradiation creep during the plant operation, it possibly contacts with liquid injection nozzle crossing beneath the Calandria tube, which subsequently results in difficulties on the safe operation. It is therefore necessary to check the gap for the confirmation of no contacts between the two tubes, Calandria tube and liquid injection tube, with a proper measure during the life of plant. In this study, an ultrasonic measurement method was selected among several methods investigated. The ultrasonic device being developed for the measurement of the gap was introduced and its preliminary performance test results were presented here. The gap between LIN and CT at site was measured using by this ultrasonic device at site.

  • PDF

Investigation of Changes in Injection Conditions Due to the Difference of Plane and Spiral Surface in Micro Particle Blasting (미세입자 분사가공 시 평면과 나선형 곡면 차이에 의한 분사조건 변화 연구)

  • Choi, Sung-Yun;Lee, Eun-Ju;Lee, Sea-Han;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.53-58
    • /
    • 2020
  • This study analyzed the surface roughness of the fine particle spraying process in the plane and the surface roughness by the factors in the fine particle spraying process on the helical surface is analyzed. Finally, the surface fine particle spraying process and the helical curved surface fine particle Analyze the difference in injection conditions of the injection process. Key process variables are particle type, nozzle diameter, and pressure. The remaining conditions are fixed values of. A total of 32 experiments were conducted, each with different process variables. Rectangular and cylindrical specimens were fabricated and a corresponding jig was prepared for use in the experiment. Analyses conducted by using ANOVA enabled comparisons of the effects of each process variable on the experiment.