• 제목/요약/키워드: Nozzle

검색결과 3,936건 처리시간 0.035초

선택적 촉매 환원법을 위한 외부 혼합형 이유체 노즐 개발에 대한 실험적 연구 (Development of an external twin-fluid nozzle for Selective Catalytic Reduction)

  • 박정근;이충원
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.24-33
    • /
    • 2004
  • The effect of the working fluid flow conditions and nozzle geometry on the spray performance of a twin-fluid nozzle used in Selective Catalytic Reduction is investigated experimentally. The liquid pressure is varied in the range of 0.3atm to 1.5atm and the air pressure is varied from the 0.5atm to 3.0atm. relative position between liquid nozzle(internal nozzle) and air nozzle(external nozzle) tip changes front 1mm inside the air nozzle to 1mm outside the air nozzle. The orifice diameter of the air nozzle is varied with 5mm. 6mm and 7mm. Spray visualization is realized with CCD-Camera. SMD(Sauter Mean Diameter) and mean particle velocities are measured by PDPA(Phase Doppler Particle Analyzer) under various experimental conditions. The measuring point is 300mm away from the nozzle tip in the downstream spray. The experimental results are that spray angle is depended air flow rate because nozzle diameter, air pressure and nozzle tip relative positions are related air flow rate. SMD is depended air flow rate and water flow rate. Also, SMD is increased when water flow rate is bigger. SMD is decreased when Air flow rate is bigger.

  • PDF

디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석 (Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines)

  • 김용래;송한호
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

추력이 최적화된 노즐의 초음속 유동에 대한 노즐벽 초기 및 출구각도의 영향 (Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimized Nozzle)

  • 전태준;박태선
    • 한국추진공학회지
    • /
    • 제25권3호
    • /
    • pp.1-13
    • /
    • 2021
  • 추력이 최적화된 노즐의 초음속 유동장에 대한 노즐벽면각도의 영향이 수치해석적으로 조사되었다. 30톤급 로켓엔진의 연소기와 작동조건이 최적노즐형상을 조사하기 위하여 선택되었다. 연소생성물의 노즐유동은 케로신-액체산소의 이동평형계산에 의해서 구현되었다. 노즐벽면 각도의 변화는 내부충격파 및 2차 충격파의 발달형태를 다르게 유도하였다. 내부충격파가 노즐출구에서 특정위치에 있을 때 최적노즐이 얻어졌다. 최적노즐에 대한 노즐벽면 각도들은 충격파를 고려하지 않고 얻어진 최적노즐 형상과 매우 유사하게 얻어졌다.

SAC 형상이 분사특성 및 분무형상에 미치는 영향 (Influence of SAC Shape on Injection Characteristics and Spray)

  • 김상진;권순익
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.11-18
    • /
    • 2001
  • To clarify the influence of SAC shape of hole-type diesel nozzle on injection characteristics and spray patterns, the injection rate of three nozzle types(standard SAC nozzle, Needle-cut VCO nozzle and VCO nozzle) were measured by Zeuch's method and pictures of the sprays were taken by CCD camera. As the pump speed became higher, the injection characteristics of the three nozzles were different. Injection rate and perssure curves at the high pressure pipe in Needle-cut VCO nozzle were much more similar to the VCO nozzle than those of the SAC nozzle. When the needle was at pre-lift period for all speeds, the spray of the Needle-cut VCO nozzle showed almost the same shape as the SAC type nozzle. There was no differense in spray pattern at the needle full-lift periods.

  • PDF

목적 공력특성 달성을 위한 플루트 노즐 전산설계 (COMPUTATIONAL DESIGN OF A FLUTED NOZZLE FOR ACHIEVING TARGET AERODYNAMIC PERFORMANCE)

  • 강영진;양영록;황의창;명노신;조태환
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2011
  • As a preliminary design study to achieve target aerodynamic performance, this work was conducted on an original nozzle with 9 flutes in order to design a fluted nozzle with 12 flutes. The thrust and rolling moment of the nozzle with 12 flutes were analyzed using a CFD code according to the depth and rotation angle of the flutes. Based on this, a fluted nozzle with 12 flutes was optimized to yield the same thrust as that of the original nozzle with 9 flutes. The response surface method was applied for shape optimization of the fluted nozzle and design variables were selected to determine the depth angle and rotation angle of the flutes. An optimized shape that led to a thrust as strong as that of the original nozzle was obtained.

5 kW급 SOFC 시스템의 연료 개질기를 위한 2-유체 노즐과 3-유체 노즐의 검토 (Examination of 2-Fluid Nozzle and 3-Fluid Nozzle for Fuel Reformer of 5 kW SOFC System)

  • 권화길;이치영;이상용
    • 한국분무공학회지
    • /
    • 제13권1호
    • /
    • pp.16-21
    • /
    • 2008
  • In the present study, the 2-fluid nozzle and 3-fluid nozzle to atomize the diesel and water with air for the fuel reformer of SOFC system were experimentally examined. In the 2-fluid nozzle, the diesel and water were alternately atomized due to bislug flow pattern, and it implies that the mixing of both liquids strongly affects the atomization pattern. On the other hand, in the 3-fluid nozzle, the diesel and water were atomized simultaneously due to the separated injection channels without mixing problem. Therefore, compared to the 2-fluid nozzle, the 3-fluid nozzle is suitable for the stable operation of the fuel reformer. In case of the 3-fluid nozzle, Type A where the air was supplied through the central channel was the most efficient.

  • PDF

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

수치해석을 이용한 Scarfed Nozzle 특성 연구 (Investigation of Scarfed Nozzle Plume effect using Numerical Analysis)

  • 최지용;이선재;김진용;박재범;이상연;허준영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1003-1005
    • /
    • 2017
  • 본 연구에서는 수치해석을 이용하여 Scarfed Nozzle의 플룸의 형태와 유동 특성을 분석하였다. 일반적인 추진기관의 노즐과 다르게 Scarfed Nozzle을 가지는 경우 축대칭의 형상을 가지지 않기 때문에 3차원 해석을 진행 하였다. Scarfed Nozzle의 플룸의 형태를 분석하기 위해 Canted Nozzle의 해석결과와 비교를 하여 연구를 수행하였다.

  • PDF

Boom-Type Nozzle System의 분두배치(噴頭配置)에 관(關)한 연구(硏究) (Study on the Nozzle Spacing in the Boom-Type Nozzle System)

  • 서정덕;이상우
    • 농업과학연구
    • /
    • 제8권2호
    • /
    • pp.212-223
    • /
    • 1981
  • 우리나라에서 생산(生産)되고 있는 3종류(種類) Nozzle인 Disk형(型), Cap형(型), 그리고 Bolt형(型)을 Boom type nozzle system에 이용(利用)하는 경우에 가장 양호(良好)한 살포량(撒布量) 분포(分布)로 살포(撒布)할수 있는 적합(適合)한 분두간격(噴頭間隔)을 구연하기 위(爲)하여 분무(噴霧)높이 30cm, 40cm, 50cm와 분무압력(噴霧壓力) $2kg/cm^2$, $3kg/cm^2$, $4kg/cm^2$, $5kg/cm^2$, $6kg/cm^2$, $7kg/cm^2$, $8kg/cm^2$로 변화(變化)하면서 바람이 없는 실내실험(室內實驗)을 하였으며 이 분석결과(分析結果)를 기초로 하여 Boom상(上)의 적합(適合)한 분두간격(噴頭間隔)을 computer로 분석(分析)한 결과(結果)는 다음과 같다. 1. 분무압력(噴霧壓力)에 의(依)한 살포량(撒布量) 분포(分布)의 균등계수(均等係數)는 분무압력(噴霧壓力)이 $5{\sim}6kg/cm^2$일 때 Nozzle A에서 80%, Noxxle C에서 83%로 컸으며 분무압력(噴霧壓力)이 $7kg/cm^2$일 때 Nozzle B에서 80%로 커TEk. 2. 분무(噴霧)높이에 의(依)한 살포량(撒布量) 분포(分布)의 균등계수(均等係數)는 Nozzle A에 있어서 40cm일 때 86%, 그리고 Nozzle A에 있어서 40츠일 때 86%, 그리고 Nozzle B와 C에 있어서는 50cm에서 80% 및 83%로 컸었다. 3. Boom상(上)의 Nozzle간격(間隔)은 작을수록 반포량(搬布量) 분포(分布)의 균등성(均等性)은 양호(良好)하였으나 작업성능(作業性能) 및 가격(價格)을 감안하여 살포건(撒布巾)의 반경(半徑)이 바람직하다고 사료(思料)된다. 4. 본(本) 실험(實驗)의 Nozzle들의 균등계수(均等係數)가 모두 90%이하(以下)로서 Boom type Nozzle로 사용시(使用時)에 개선(改善)이 요구(要求)된다.

  • PDF

다방향으로 입체 보강된 복합재 노즐의 열탄성해석 (Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle)

  • 유재석;김광수;이상의;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF