• Title/Summary/Keyword: Nox4

Search Result 726, Processing Time 0.035 seconds

An Experimental Research on Performance and Emission Characteristics of Direct-Injection Diesel Engines with Annular Two-stage Combustion Chamber (환상 2단연소실을 갖는 직접분사식 디젤기관의 성능 및 배출물 특성에 관한 실험적 연구)

  • Kim, D.H.;Bae, J.U.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.12-18
    • /
    • 2003
  • Various measures have been tried to reduce the NOx emission from diesel engine, but with partial success because the mechanisms of NOx and PM formations appear to have trade-off relation between each other. Therefore it has been known to be difficult to reduce NOx emission and PM emission simultaneously. Two stage combustion method i,e. a combustion process which has rich combustion stage and lean combustion stage one by one, has been developed successfully to reduce NOx formation in the continuous combustion chambers such as in the boilers. But until yet it is not successful to apply the same method in intermittent combustion chamber like in the diesel engine cylinder, as it was, only several research works were carried out. In this study, devised was a uniquely shaped combustion chamber with reformed piston crown intended to keep fuel-rich condition during early stage of combustion and fuel-lean condition during next stage. It was found that the NOx emission decreased significantly at various conditions of operation with the two stage combustion type engines of PR20 type, but other values such as smoke, CO and specific fuel consumption deteriorated as usual.

  • PDF

Study on Coal Combustion Characteristics with 1MWth Test Facility (1MWth 실험연소로를 이용한 석탄의 연소특성 연구)

  • Jang, Gil Hong;Chang, In Gab;Jeong, Seok Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1464-1472
    • /
    • 1999
  • Design and operation of $1MW_{th}$ pulverized coal combustion testing facility are described. Also the influence of air staging on NOx emission and burnout of coal flames was investigated in this facility. The test facility consisted of coal feeding system, firing system and flue gas treatment system. A top-fired externally air staging burner was adopted in order to avoid influence of gravity on the coal particles and for easy maintenance. Distribution of temperature and chemical species concentration of coal flames could be measured in vertical pass of furnace. Main fuel was pulverized (83.4% less than $80{\mu}m$) Australian high bituminous coal. From variety of test conditions, overall excess air ratio was selected at 1.2(20% excess air). Tho study showed that increasing the staged air resulted in lower NOx omission, and it was suggested to be more than 40% of the total combustion air for the substantial NOx reduction. Sufficient burnout was not achievable when NOx emission was less than 500ppm. Also, the amount of core air did not influence tho NOx reduction.

Emissions of Ozone Precursors from a Biogenic Source and Port-related Sources in the Largest Port City of Busan, Korea

  • Shon, Zang-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • The emissions of ozone precursors, NOx and VOCs from a biogenic source and port-related sources (ship, shipping container truck, and cargo handling equipment) were estimated in Busan during 2013. Total biogenic isoprene emission in Busan during 2013 was estimated to be $4,434ton\;yr^{-1}$ with the highest emission (e.g., $28ton\;day^{-1}$) in summer using a BEIS method. Seasonal ozone production rates by isoprene ranged from 0.15 (winter) to 2.08 (summer) $ppb\;hr^{-1}$, contributing the predominant portion to ambient ozone levels. Total emissions of NOx and VOCs from ship traversing Busan ports were estimated to be 29,537 and $814ton\;yr^{-1}$, respectively, showing the significant contribution to total NOx emission in Busan. The emissions of ozone precursors were significantly different depending on ship tonnage and port location. Compared to the ship emission, the emissions of NOx and VOCs from the shipping container trucks in Busan were insignificant (2.9% for NOx and 3.9% for VOCs). Total NOx and VOCs emissions from the cargo handling equipment were estimated to be 1,440 and $133ton\;yr^{-1}$, respectively with the predominance of yard tractors.

A Study on NOx Pollutant Reduction and Combustion Characteristics of Impinging-Jet-Flame combustion Process(III) (대향분출염 화염방식에 의한 NOx 생성저감과 연소특성 연구 (III))

  • 최성만;정인석;조경국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 1996
  • It has been generally accepted that NOx formation increases as the maximum temperature or correspondingly the maximum pressure of a combustion system increases. Recently some exceptional experimental results have been reportes that under certain circumstance NOx formation could be reduced while the maximum pressure was increasing by varying the methods of combustion for the same kind of premixed gases. Until now that kind of results have been acquired only for the case of a dual opposed prechamber. But the mechanism has not been clearly understood yet. 3D computer simulation has been tried to clarify the mechanism. Flor this purpose KIVA-Ⅱ has been modified and applied to the model combustion chamber with which the same kind of experimental works have been done by the authors. A good agreement with the experimental results was achieved with the spatial and temporal resolution which is hard th be obtained by the experimental methods. And it was observed that for the dual opposed prechamber case the time for the NOx formation, which is non-equilibrium reaction, is shorter than any other case by an appropriate mixing process in the main combustion chamber. The shorter time reduceed heat loss through the combustion chamber walls and thereby obtaines the higher maximum pressure.

  • PDF

A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine (대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구)

  • Jeong, Soo-Jin;Lee, Chun-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.

Spray Behavior Characteristics of Injector Used for HC-DeNOx Catalyst System in the Transparent Exhaust Manifold (모사 배기관 내 HC-DeNOx 촉매용 인젝터의 분무 거동 특성)

  • Lee, Dong-Hoon;Oh, Jung-Mo;Jeong, Hae-Young;Lee, Ki-Hyung;Yeo, Kwon-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.54-60
    • /
    • 2007
  • A new method that optimizes a control of hydrocarbon (HC) addition to diesel exhaust gas for HC type DeNOx catalyst system has been developed. These catalysts are called as the HC-DeNOx catalyst in this paper. The system using HC-DeNOx catalyst requires a resonable quantity of hydrocarbons addition in the inlet gas of the catalyst, because the HC concentration in a diesel engine is so low that the HC is not sufficient for NOx conversion. Generally ambient temperature in the exhaust manifold is $250{\sim}350^{\circ}C$, so spray behavior in this case is different from that of any other condions. This research shows spray behavior of injected hydrocarbons in the transparent exhaust manifold.

Estimation of Reliability of Real-time Control Parameters for Animal Wastewater Treatment Process and Establishment of an Index for Supplemental Carbon Source Addition (가축분뇨처리공정의 자동제어 인자 신뢰성 평가 및 적정 외부탄소원 공급량 지표 확립)

  • Pak, JaeIn;Ra, Jae In-
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.561-572
    • /
    • 2008
  • Responses of real-time control parameters, such as ORP, DO and pH, to the conditions of biological animal wastewater treatment process were examined to evaluate the stability of real-time control using each parameter. Also an optimum index for supplemental carbon source addition based on NOx-N level was determined under a consideration of denitrification rate by endogenous respiration of microorganism and residual organic matter in liquor. Experiment was performed with lab-scale sequencing batch reactor(SBR) and working volume of the process was 45L. The distinctive nitrogen break point(NBP) on ORP-and DO-time profiles, which mean the termination of nitrification, started disappearing with the maintenance of low NH4-N loading rate. Also the NBP on ORP-and DO-time profiles was no longer observed when high NOx-N was loaded into the reactor, and the sensitivity of ORP became dull with the increase of NOx-N level. However, the distinctive NBP was constantly occurred on pH(mV)-time profile, maintaining unique profile patterns. This stable occurrence of NBP on pH(mV)-time profile was lasted even at very high NOx-N:NH4-N ratio(over 80:1) in reactor, and the specific point could be easily detected by tracking moving slope change(MSC) of the curve. Revelation of NBP on pH(mV)-time profile and recognition of the realtime control point using MSC were stable at a condition of over 300mg/L NOx-N level in reactor. The occurrence of distinctive NBP was persistent on pH(mV)-time profile even at a level of 10,000mg/L STOC(soluble total organic carbon) and the recognition of NBP was feasible by tracing MSC, but that point on ORP and DO-time profiles began to disappear with the increase of STOC level in reactor. The denitrfication rate by endogenous respiration and residual organic matter was about 0.4mg/L.hr., and it was found that 0.83 would be accepted as an index for supplemental carbon source addition when 0.1 of safety factor was applied.

Automotive pollution & control strategy (자동차 공해 및 그 대책)

  • 장익순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.1-12
    • /
    • 1986
  • 대기오염의 역사는 산업의 발전과 그 맥락을 같이 한다. 자동차가 대기오염의 한 Source로 주목 을 받기 시작한 것은 1940년대초 LA의 극심한 Smog발생의 원인을 찾으면서 부터이며, 1950년대 에 와서 Haagen Smit박사에 의해 Photo Smog의 Mechamism이 해석되면서 Smog를 유발하는 HC, NOx는 자동차 배출 Gas가 50% 이상을, 유해한 CO는 90%이상을 기여한다는 것이 파명되 어, 1965년 미국 California주에서 자동차에 대한 배출 Gas규제가 최초로 시작되었다. 자동차 배출 Gas로서 규제대상은 HC(타화수소), CO, NOx(질소산화물)이며, 엔진 Crankcase Emission(Blow-by Gas), Tail pipe로부터 배출되는 Exhaust Emission, 그리고 연료 Tank, 기 화기등의 연료계로부터 배출되는 Evaporative Emission에서의 HC, CO, NOx 각 상한치를 규제 하고 있다.

  • PDF

LNG Combustion Characteristics of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 산소공여입자의 LNG 연소특성)

  • Ryu, Ho-Jung;Bae, Dal-Hee;Jin, Gyoung-Tae
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-147
    • /
    • 2005
  • LNG combustion characteristics of oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Three particles, NiO/bentonite, $NiO/NiAl_2O_4$, $CO_xO_y/CoAl_2O_4$, were used as oxygen carrier particles and LNG and air were used as reactants for reduction and oxidation, respectively. In the reducer, high gas conversion and high $CO_2$ selectivity were achieved for all three particles. In the oxidizer, NOx was not detected. The results of exhaust gas analysis showed that inherent $CO_2$ separation and NOx-free combustion are possible in the LNG fueled chemical-looping combustion system with NiO/bentonite, $NiO/NiAl_2O_4$ and $Ca_xO_y/CoAl_2O_4$ particles.

  • PDF

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.