• Title/Summary/Keyword: Novel mutation

Search Result 299, Processing Time 0.027 seconds

Cloning and Sequencing of the Gene Involved in Morphological Change of Zoogloea ramigera 115SLR

  • Lee, Sam-Pin;Kim, Tae-Rahk;Sinskey, Anthony-John
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • Plasmid pLEX3 isolated from the recombinant cosmid library of Zoogloea ramigera 115 was found to be responsible for the restoration of the rugose colony phenotype. To confirm the essential region responsible for the complementation, subclones were constructed from plasmid pLEX3 and transformed into mutant strain Z. ramigera 115SLR. The recombinant plasmids pLEX10 and pLEX11 were shown to complement the slime-forming property of Z. ramigera 115SLR. In a compositional analysis of the exopolysaccharides from Z. ramigera 115, Z. ramigera 115SLR, and Z. ramigera 115SLR harboring plasmid pLEX11, the exopolysaccharides showed a similar composition with glucose, galactose, and side chain groups. The complete nucleotide sequence of the 3.25kb genocim DNA insert in plasmid pLEX11 was determined and its analysis identified two open reading frames which could encode two proteins. The gene products derived form the two open reading frames were confirmed by and in vivo transcription using a T7-RNA polymerase. The ORF1 produced a 30 kDa protein, whereas the ORF2 was found responsible for the complementation of the morphological mutation and produced a 14 kDa protein. An in vivo gene expression of plasmid pTEX10 showed another open reading frame encoding a 50 kDa protein. The gene products form ORF1 and ORF2 are regarded as novel proteins which do not show any homology with other proteins.

  • PDF

Mutation of the lbp-5 gene alters metabolic output in Caenorhabditis elegans

  • Xu, Mo;Choi, Eun-Young;Paik, Young-Ki
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Intracellular lipid-binding proteins (LBPs) impact fatty acid homeostasis in various ways, including fatty acid transport into mitochondria. However, the physiological consequences caused by mutations in genes encoding LBPs remain largely uncharacterized. Here, we explore the metabolic consequences of lbp-5 gene deficiency in terms of energy homeostasis in Caenorhabditis elegans. In addition to increased fat storage, which has previously been reported, deletion of lbp-5 attenuated mitochondrial membrane potential and increased reactive oxygen species levels. Biochemical measurement coupled to proteomic analysis of the lbp-5(tm1618) mutant revealed highly increased rates of glycolysis in this mutant. These differential expression profile data support a novel metabolic adaptation of C. elegans, in which glycolysis is activated to compensate for the energy shortage due to the insufficient mitochondrial ${\beta}$-oxidation of fatty acids in lbp-5 mutant worms. This report marks the first demonstration of a unique metabolic adaptation that is a consequence of LBP-5 deficiency in C. elegans.

Neurovascular Manifestation of Loeys-Dietz Syndrome: A Case Report

  • Lee, Yun-Jeong;Yum, Mi-Sun;Kim, Eun-Hee;Choi, Hae-Won;Lee, Beom Hee;Yoo, Han-Wook;Ko, Tae-Sung
    • Journal of Genetic Medicine
    • /
    • v.10 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • Loeys-Dietz syndrome (LDS) is an autosomal dominant disorder caused by heterozygous mutations in the genes encoding transforming growth factor-${\beta}$ receptor type 1 or 2. It is typically characterized by a triad of hypertelorism, cleft palate or bifid uvula, and arterial tortuosity with aneurysm or dissection. Characteristic vascular abnormalities such as tortuosity, aneurysms, dissections, and stenosis are the most severe complications of LDS and can occur in the neurovascular system. We report a 5-year-old boy who presented with headaches and neurovascular abnormalities and was diagnosed with LDS with a novel mutation of the TGFBR1 gene. It is the first Korean report of neurovascular abnormalities in LDS.

The First Neonatal Case of Neonatal Argininosuccinic Aciduria in Korea

  • Hwang, In-Ok;Lee, Eun-Sil
    • Neonatal Medicine
    • /
    • v.18 no.1
    • /
    • pp.143-147
    • /
    • 2011
  • Argininosuccinic aciduria (ASAuria) is a rare autosomal recessive urea cycle disorder. Neonatal presentation of ASAuria is the most common form. It is characterized by lethargy, feeding intolerance, decreased consciousness, and coma after 24 to 72 hours of birth. We describe a rare case of ASAuria in a female neonate who presented with severe hyperammonemia, a typical characteristic of urea cycle disorders. This patient's diagnosis was confirmed by biochemical analyses, and we found that the patient had a point mutation of the argininosuccinate lyase gene, which was homozygous for a novel 556C>T substitution. We have never seen the neonatal form of ASAuria in Korea. Therefore, this is the first report of neonatal onset ASAuria in Korea.

Promyelocytic Leukemia (PML) Gene Mutations may not Contribute to Gastric Adenocarcinoma Development

  • Imani-Saber, Zeinab;Yousefi-Razin, Ehsan;Javaheri, Mona;Mirfakhraie, Reza;Motalleb, Gholamreza;Ghafouri-Fard, Soudeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3523-3525
    • /
    • 2015
  • Gastric cancer is the second most common cause of cancer death worldwide. Environmental as well as genetic factors have been shown to be involved in its genesis. Among genetic factors, loss of function of a tumor suppressive gene named promyelocytic leukemia (PML) has been demonstrated in gastric cancer. In order to cast light in the mechanism by which PML protein is under-expressed in gastric cancer cells, we analyzed all exons and intron-exon boundaries of PML gene in 50 formalin-fixed paraffin-embedded tissue blocks from gastric carcinoma tumors by means of PCR-SSCP and CSGE, with direct sequencing of abnormally shifted bands. We found a novel sequence variant of unknown significance localized in intron 5 in 3 samples (c.1398+84delA). We did not detect any deleterious mutations of the PML gene. This study shows that PML mutations may not contribute to gastric adenocarcinoma development. Post-translational modifications or protein degradation might be mechanisms by which PML is not expressed in gastric tumors.

Early-onset epileptic encephalopathies and the diagnostic approach to underlying causes

  • Hwang, Su-Kyeong;Kwon, Soonhak
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.11
    • /
    • pp.407-414
    • /
    • 2015
  • Early-onset epileptic encephalopathies are one of the most severe early onset epilepsies that can lead to progressive psychomotor impairment. These syndromes result from identifiable primary causes, such as structural, neurodegenerative, metabolic, or genetic defects, and an increasing number of novel genetic causes continue to be uncovered. A typical diagnostic approach includes documentation of anamnesis, determination of seizure semiology, electroencephalography, and neuroimaging. If primary biochemical investigations exclude precipitating conditions, a trial with the administration of a vitaminic compound (pyridoxine, pyridoxal-5-phosphate, or folinic acid) can then be initiated regardless of presumptive seizure causes. Patients with unclear etiologies should be considered for a further workup, which should include an evaluation for inherited metabolic defects and genetic analyses. Targeted next-generation sequencing panels showed a high diagnostic yield in patients with epileptic encephalopathy. Mutations associated with the emergence of epileptic encephalopathies can be identified in a targeted fashion by sequencing the most likely candidate genes. Next-generation sequencing technologies offer hope to a large number of patients with cryptogenic encephalopathies and will eventually lead to new therapeutic strategies and more favorable long-term outcomes.

Kabuki syndrome: clinical and molecular characteristics

  • Cheon, Chong-Kun;Ko, Jung Min
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.9
    • /
    • pp.317-324
    • /
    • 2015
  • Kabuki syndrome (KS) is a rare syndrome characterized by multiple congenital anomalies and mental retardation. Other characteristics include a peculiar facial gestalt, short stature, skeletal and visceral abnormalities, cardiac anomalies, and immunological defects. Whole exome sequencing has uncovered the genetic basis of KS. Prior to 2013, there was no molecular genetic information about KS in Korean patients. More recently, direct Sanger sequencing and exome sequencing revealed KMT2D variants in 11 Korean patients and a KDM6A variant in one Korean patient. The high detection rate of KMT2D and KDM6A mutations (92.3%) is expected owing to the strict criteria used to establish a clinical diagnosis. Increased awareness and understanding of KS among clinicians is important for diagnosis and management of KS and for primary care of KS patients. Because mutation detection rates rely on the accuracy of the clinical diagnosis and the inclusion or exclusion of atypical cases, recognition of KS will facilitate the identification of novel mutations. A brief review of KS is provided, highlighting the clinical and genetic characteristics of patients with KS.

MICAL-like Regulates Fasciclin II Membrane Cycling and Synaptic Development

  • Nahm, Minyeop;Park, Sunyoung;Lee, Jihye;Lee, Seungbok
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.762-767
    • /
    • 2016
  • Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule (NCAM), plays a critical role in synaptic stabilization and plasticity. Although this molecule undergoes constitutive cycling at the synaptic membrane, how its membrane trafficking is regulated to ensure proper synaptic development remains poorly understood. In a genetic screen, we recovered a mutation in Drosophila mical-like that displays an increase in bouton numbers and a decrease in FasII levels at the neuromuscular junction (NMJ). Similar phenotypes were induced by presynaptic, but not postsynaptic, knockdown of mical-like expression. FasII trafficking assays revealed that the recycling of internalized FasII molecules to the cell surface was significantly impaired in mical-like-knockdown cells. Importantly, this defect correlated with an enhancement of endosomal sorting of FasII to the lysosomal degradation pathway. Similarly, synaptic vesicle exocytosis was also impaired in mical-like mutants. Together, our results identify Mical-like as a novel regulator of synaptic growth and FasII endocytic recycling.

Genetic Variations Leading to Familial Dilated Cardiomyopathy

  • Cho, Kae Won;Lee, Jongsung;Kim, Youngjo
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.722-727
    • /
    • 2016
  • Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and prevalent form of cardiomyopathy and usually requires heart transplantation. Its etiology remains unclear. Recent genetic studies of single gene mutations have provided significant insights into the complex processes of cardiac dysfunction. To date, over 40 genes have been demonstrated to contribute to dilated cardiomyopathy. With advances in genetic screening techniques, novel genes associated with this disease are continuously being identified. The respective gene products can be classified into several functional groups such as sarcomere proteins, structural proteins, ion channels, and nuclear envelope proteins. Nuclear envelope proteins are emerging as potential molecular targets in dilated cardiomyopathy. Because they are not directly associated with contractile force generation and transmission, the molecular pathways through which these proteins cause cardiac muscle disorder remain unclear. However, nuclear envelope proteins are involved in many essential cellular processes. Therefore, integrating apparently distinct cellular processes is of great interest in elucidating the etiology of dilated cardiomyopathy. In this mini review, we summarize the genetic factors associated with dilated cardiomyopathy and discuss their cellular functions.

Loss-of-function and Gain-of-function Rice Mutants from Gamma-Ray Mutagenesis

  • Lee, Seon-Woo;Park, Gyung-Ja;Kim, Jin-Cheol;Kim, Heung-Tae;Park, Yong-Ho;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.19 no.6
    • /
    • pp.301-304
    • /
    • 2003
  • Gamma-ray irradiation is known to induce various mutations in plants caused by chromosome alterations. This study investigated disease responses of selected gamma-ray induced rice mutants generated from seven Japonica-type rice cultivars against three plant diseases. Among the tested 22 mutants, three gain-of-function mutants and six loss-of-function mutants against rice blast were obtained, as well as three loss-of-function mutants against bacterial leaf blight (BLB). Two of the loss-of-function mutants were susceptible to both rice blast and BLB. Gain-of-function mutation has not been frequently observed in rice plants, thus, the mutants can be used to identify loci of novel genes for the regulation of disease resistant response.