• Title/Summary/Keyword: Novel Mutations

Search Result 250, Processing Time 0.028 seconds

Novel ATP8B1 Gene Mutations in a Child with Progressive Familial Intrahepatic Cholestasis Type 1

  • Rhee, Eun Sang;Kim, Yu Bin;Lee, Sunghee;Oh, Seak Hee;Lee, Beom Hee;Kim, Kyung Mo;Yoo, Han-Wook
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.5
    • /
    • pp.479-486
    • /
    • 2019
  • Progressive familial intrahepatic cholestasis (PFIC) is a group of severe genetic disorders, inherited in an autosomal recessive manner, causing cholestasis of hepatocellular origin, later progressing to biliary cirrhosis and liver failure. This is the first report of PFIC type 1 with novel compound heterozygous mutations in Korea. The patient was presented with intrahepatic cholestasis, a normal level of serum ${\gamma}-glutamyl$ transferase, steatorrhea, and growth failure. Genetic testing of this patient revealed novel compound heterozygous mutations (p.Glu585Ter and p.Leu749Pro) in the ATP8B1 gene. After a liver transplantation at age 19 months, the patient developed severe post-transplant steatohepatitis.

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

  • Ahn, Sung Yeon;Kim, Gu-Hwan;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.8
    • /
    • pp.309-312
    • /
    • 2015
  • Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium ($K_{ATP}$) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonylureas close the $K_{ATP}$ channel and increase insulin secretion. KCNJ11 and ABCC8 mutations have important therapeutic implications because sulfonylurea therapy can be effective in treating patients with mutations in the potassium channel subunits. The mutation type, the presence of neurological features, and the duration of diabetes are known to be the major factors affecting the treatment outcome after switching to sulfonylurea therapy. More than 30 mutations in the KCNJ11 gene have been identified. Here, we present our experience with a patient carrying a novel p.H186D heterozygous mutation in the KCNJ11 gene who was successfully treated with oral sulfonylurea.

Novel heterozygous MCCC1 mutations identified in a patient with 3-methylcrotonyl-coenzyme A carboxylase deficiency

  • Kim, Yoon-Myung;Seo, Go Hun;Kim, Gu-Hwan;Yoo, Han-Wook;Lee, Beom Hee
    • Journal of Genetic Medicine
    • /
    • v.14 no.1
    • /
    • pp.23-26
    • /
    • 2017
  • Isolated 3-methylcrotonyl-CoA carboxylase deficiency is an autosomal recessive disorder affecting leucine metabolism; it is one of the most common inborn metabolic diseases detected in newborn screening. Mutations in the genes MCCC1 or MCCC2 cause a defect in the enzyme 3-methylcrotonyl-CoA carboxylase, with MCCC2 mutations being the form predominantly reported in Korea. The majority of infants identified by neonatal screening usually appear to be asymptomatic and remain healthy; however, some patients have been reported to exhibit mild to severe metabolic decompensation and neurologic manifestations. Here we report the clinical features of a patient with asymptomatic 3-methylcrotonyl-CoA carboxylase deficiency and novel heterozygous MCCC1 mutations.

Mutation Analysis of the Dimer Forming Domain of the Caspase 8 Gene in Oral Submucous Fibrosis and Squamous Cell Carcinomas

  • Menon, Uthara;Poongodi, V;Raghuram, Pitty Hari;Ashokan, Kannan;Govindarajan, Giri Valanthan Veda;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4589-4592
    • /
    • 2015
  • Background: Missense and frame-shift mutations within the dimer forming domain of the caspase 8 gene have been identified in several cancers. However, the genetic status of this region in precancerous lesions, like oral submucous fibrosis (OSMF), and well differentiated oral squamous cell carcinomas (OSCCs) in patients from southern region of India is not known, and hence the present study was designed to address this issue. Materials and Methods: Genomic DNA isolated from biopsy tissues of thirty one oral submucous fibrosis and twenty five OSCC samples were subjected to PCR amplification with intronic primers flanking exon 7 of the caspase 8 gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the status of mutation. Results: Sequence analysis identified a frame-shift and a novel missense mutation in two out of twenty five OSCC samples. The frame-shift mutation was due to a two base pair deletion (c.1225_1226delTG), while the missense mutation was due to substitution of wild type cysteine residue with phenylalanine at codon 426 (C426F). The missense mutation, however, was found to be heterozygous as the wild type C426C codon was also present. None of the OSMF samples carried mutations. Conclusions: The identification of mutations in OSCC lesions but not OSMF suggests that dimer forming domain mutations in caspase 8 may be limited to malignant lesions. The absence of mutations in OSMF also suggests that the samples analyzed in the present study may not have acquired transforming potential. To the best of our knowledge this is the first study to have explored and identified frame-shift and novel missense mutations in OSCC tissue samples.

Phenotypic and Molecular Characteristics of Children with Progressive Familial Intrahepatic Cholestasis in South China

  • Zhang, Wen;Lin, Ruizhu;Lu, Zhikun;Sheng, Huiying;Xu, Yi;Li, Xiuzhen;Cheng, Jing;Cai, Yanna;Mao, Xiaojian;Liu, Li
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.6
    • /
    • pp.558-566
    • /
    • 2020
  • Purpose: Progressive familial intrahepatic cholestasis (PFIC) is a rare genetic autosomal recessive disease caused by mutations in ATP8B1, ABCB11 or ABCB4. Mutational analysis of these genes is a reliable approach to identify the disorder. Methods: We collected and analyzed relevant data related to clinical diagnosis, biological investigation, and molecular determination in nine children carrying these gene mutations, who were from unrelated families in South China. Results: Of the nine patients (five males, four females) with PFIC, one case of PFIC1, four cases of PFIC2, and four cases of PFIC3 were diagnosed. Except in patient no. 8, jaundice and severe pruritus were the major clinical signs in all forms. γ-glutamyl transpeptidase was low in patients with PFIC1/PFIC2, and remained mildly elevated in patients with PFIC3. We identified 15 different mutations, including nine novel mutations (p.R470HfsX8, p.Q794X and p.I1170T of ABCB11 gene mutations, p.G319R, p.A1047P, p.G1074R, p.T830NfsX11, p.A1047PfsX8 and p.N1048TfsX of ABCB4 gene mutations) and six known mutations (p.G446R and p.F529del of ATP8B1 gene mutations, p.A588V, p.G1004D and p.R1057X of ABCB11 gene mutations, p.P479L of ABCB4 gene mutations). The results showed that compared with other regions, these three types of PFIC genes had different mutational spectrum in China. Conclusion: The study expands the genotypic spectrum of PFIC. We identified nine novel mutations of PFIC and our findings could help in the diagnosis and treatment of this disease.

Identification and Clinical Implications of Novel MYO15A Mutations in a Non-consanguineous Korean Family by Targeted Exome Sequencing

  • Chang, Mun Young;Kim, Ah Reum;Kim, Nayoung K.D.;Lee, Chung;Lee, Kyoung Yeul;Jeon, Woo-Sung;Koo, Ja-Won;Oh, Seung Ha;Park, Woong-Yang;Kim, Dongsup;Choi, Byung Yoon
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.781-788
    • /
    • 2015
  • Mutations of MYO15A are generally known to cause severe to profound hearing loss throughout all frequencies. Here, we found two novel MYO15A mutations, c.3871C>T (p.L1291F) and c.5835T>G (p.Y1945X) in an affected individual carrying congenital profound sensorineural hearing loss (SNHL) through targeted resequencing of 134 known deafness genes. The variant, p.L1291F and p.Y1945X, resided in the myosin motor and IQ2 domains, respectively. The p.L1291F variant was predicted to affect the structure of the actin-binding site from three-dimensional protein modeling, thereby interfering with the correct interaction between actin and myosin. From the literature analysis, mutations in the N-terminal domain were more frequently associated with residual hearing at low frequencies than mutations in the other regions of this gene. Therefore we suggest a hypothetical genotype-phenotype correlation whereby MYO15A mutations that affect domains other than the N-terminal domain, lead to profound SNHL throughout all frequencies and mutations that affect the N-terminal domain, result in residual hearing at low frequencies. This genotype-phenotype correlation suggests that preservation of residual hearing during auditory rehabilitation like cochlear implantation should be intended for those who carry mutations in the N-terminal domain and that individuals with mutations elsewhere in MYO15A require early cochlear implantation to timely initiate speech development.

Mutations in Streptomycin Resistance Genes and Their Relationship to Streptomycin Resistance and Lineage of Mycobacterium tuberculosis Thai Isolates

  • Hlaing, Yin Moe;Tongtawe, Pongsri;Tapchaisri, Pramuan;Thanongsaksrikul, Jeeraphong;Thawornwan, Unchana;Archanachan, Buppa;Srimanote, Potjanee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.2
    • /
    • pp.159-168
    • /
    • 2017
  • Background: Streptomycin (SM) is recommended by the World Health Organization (WHO) as a part of standard regimens for retreating multidrug-resistant tuberculosis (MDR-TB) cases. The incidence of MDR-TB in retreatment cases was 19% in Thailand. To date, information on SM resistance (SMR) gene mutations correlated to the SMR of Mycobacterium tuberculosis Thai isolates is limited. In this study, the mutations in rpsL, rrs, gidB, and whiB7 were investigated and their association to SMR and the lineage of M. tuberculosis were explored. Methods: The lineages of 287 M. tuberculosis collected from 2007 to 2011 were identified by spoligotyping. Drug susceptibility profiles were evaluated by the absolute concentration method. Mutations in SMR genes of 46 SM-resistant and 55 SM-susceptible isolates were examined by DNA sequencing. Results: Three rpsL (Lys43Arg, Lys88Arg, and Lys88Thr) and two gidB (Trp45Ter and Gly69Asp) mutations were present exclusively in the SM resistant M. tuberculosis. Lys43Arg rpsL was the most predominant SMR mutations (69.6%) and prevailed among Beijing isolates (p<0.001). No SMR-related mutation in was found rrs. The combination of rpsL and gidB mutations provided 76.1% sensitivity for detecting SMR in M. tuberculosis Thai isolates. whiB7 was not responsible for SMR in SM resistant isolates lacking rpsL and rrs mutations. The significance of the three gidB mutations, 276A>C, 615A>G, and 330G>T, as lineage signatures for Beijing and EAI were underscored. This study identified 423G>A gidB as a novel sub-lineage marker for EAI6-BGD1. Conclusion: Our study suggested that the majority of SMR in M. tuberculosis Thai isolates were responsible by rpsL and gidB polymorphisms constantly providing the novel lineage specific makers.

Analysis of Small Fragment Deletions of the APC gene in Chinese Patients with Familial Adenomatous Polyposis, a Precancerous Condition

  • Chen, Qing-Wei;Zhang, Xiao-Mei;Zhou, Jian-Nong;Zhou, Xin;Ma, Guo-Jian;Zhu, Ming;Zhang, Yuan-Ying;Yu, Jun;Feng, Ji-Feng;Chen, Sen-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4915-4920
    • /
    • 2015
  • Background: : Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease mainly caused by mutations of the adenomatous polyposis coli (APC) gene with almost complete penetrance. These colorectal polyps are precancerous lesions that will inevitable develop into colorectal cancer at the median age of 40-year old if total proctocolectomy is not performed. So identification of APC germline mutations has great implications for genetic counseling and management of FAP patients. In this study, we screened APC germline mutations in Chinese FAP patients, in order to find novel mutations and the APC gene germline mutation characteristics of Chinese FAP patients. Materials and Methods: The FAP patients were diagnosed by clinical manifestations, family histories, endoscope and biopsy. Then patients peripheral blood samples were collected, afterwards, genomic DNA was extracted. The mutation analysis of the APC gene was conducted by direct polymerase chain reaction (PCR) sequencing for micromutations and multiplex ligation-dependent probe amplification (MLPA) for large duplications and/or deletions. Results: We found 6 micromutations out of 14 FAP pedigrees, while there were no large duplications and/or deletions found. These germline mutations are c.5432C>T(p. Ser1811Leu), two c.3926_3930delAAAAG (p.Glu1309AspfsX4), c.3921_3924delAAAA (p.Ile1307MetfsX13), c3184_3187delCAAA(p.Gln1061AspfsX59) and c4127_4126delAT (p.Tyr1376LysfsX9), respectively, and all deletion mutations resulted in a premature stop codon. At the same time, we found c.3921_3924delAAAA and two c.3926_3930delAAAAG are located in AAAAG short tandem repeats, c3184_3187delCAAA is located in the CAAA interrupted direct repeats, and c4127_4128 del AT is located in the 5'-CCTGAACA-3', 3'-ACAAGTCC-5 palindromes (inverted repeats) of the APC gene. Furthermore, deletion mutations are mostly located at condon 1309. Conclusions: Though there were no novel mutations found as the pathogenic gene of FAP in this study, we found nucleotide sequence containing short tandem repeats and palindromes (inverted repeats), especially the 5 bp base deletion at codon 1309, are mutations in high incidence area in APC gene,.

Real-Time PCR Detection of 16S rRNA Novel Mutations Associated with Helicobacter pylori Tetracycline Resistance in Iran

  • Dadashzadeh, Kianoosh;Milani, Morteza;Rahmati, Mohammad;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8883-8886
    • /
    • 2014
  • Background: Tetracycline is an antibiotic widely used for the treatment of Helicobacter pylori infection, but its effectiveness is decreasing due to increasing bacterial resistance. The aim of this study was to investigate the occurrence of 16S rRNA mutations associated with resistance or reduced susceptibility to tetracycline ofHelicobacter pylori by real-time PCR (RT-PCR) assays from culture. Materials and Methods: Tetracycline susceptibility and minimal inhibition concentration (MIC) was determined by the Epsilometer test (Etest) method. A LightCycler assay developed to detect these mutations was applied to DNA extracted from culture. The 16S rRNA of these isolates was sequenced and resistance-associated mutations were identified. From 104 isolates of H. pylori examined, 11 showed resistance to tetracycline. Results: LightCycler assay was applied to DNA extracted from 11 tetracycline-susceptible and 11 tetracycline resistance H. pylori isolates. In our study the sequencing of the H. pylori wild types in 16 s rRNA gene were AGA 926-928 with MIC (0.016 to $0.5{\mu}g/ml$), while the sequencing and MIC for resistant were GGA and AGC, (0.75 to $1.5{\mu}g/ml$), respectively. Also we found a novel mutation in 2 strains with $84^{\circ}C$ as their melting temperatures and exhibition of an A939C mutation. Conclusions: We conclude that real-time PCR is an excellent method for determination of H. pylori tetracycline resistance related mutations that could be used directly on biopsy specimens.

Identification of Novel Mutations In Adenosine Deaminase Gene In Korean Leukemia Patients (한국인 백혈병 환자에서 아데노신 디아미나제 유전자의 새로운 변이의 확인)

  • Park, Ki-Ho
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.453-456
    • /
    • 2010
  • Leukemia is the abnormal increase of hematopoietic progenitor cells in tissues, resulting in anemia, increased susceptibility to infection and impaired blood clotting. The adenosine deaminase (ADA) gene is an important druggable target for the treatment of leukemia patients. Genetic and molecular analyses were performed to determine the effects of ADA gene mutations in 20 leukemia patients in the Korean population. To analyze the relationship between genotype and phenotype, the ADA genomic DNAs - including 1,092 bp of 12 exons and partial intron sequences flanking each exon - were sequenced and compared. In this study, the known mutations in other diseases, more than 50 mutations already reported in patients with severe combined immunodeficiency disease (SCID) and autism, were not found, but two novel mutations in leukemia patients were discovered. They include one nonsense mutation (A>C at nt position 478, F101F) and one missense mutation (G>A at nt position 778, E260K). One missense mutation (G>A at nt position 22, D8Y) was also detected in 20 normal control patients (allelic frequency of 7.5%). Interestingly, subjects in the Korean population retained 2 bp insertion at the intron 6 (IVS6-52insGC), something that has never been shown in other populations. The genetic study to find out the correlation between the mutant alleles and leukemia patients revealed no association statistically (p>0.05). The mutation found in leukemia needs further study to determine its possibility as a molecular marker for the diagnosis of leukemia.