• Title/Summary/Keyword: Notched input

Search Result 14, Processing Time 0.017 seconds

Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern (복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

Estimation of Composite Laminate Design Allowables Using the Statistical Characteristics of Lamina Level Test Data

  • Nam, Kyungmin;Park, Kook Jin;Shin, SangJoon;Kim, Seung Jo;Choi, Ik-Hyeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.360-369
    • /
    • 2015
  • A methodology for determining the design allowables of composite laminates by using lamina level test data and finite element analysis (FEA) is proposed and verified in this paper. An existing method that yields the laminate design allowables by using the complete test results for laminates was improved to reduce the expensive and time-consuming tests. Input property samples for FEA were generated after considering the statistical distribution characteristics of lamina level test data., and design allowables were derived from several FEA analyses of laminates. To apply and verify the proposed method, Hexcel 8552 IM7 test data were used. For both un-notched and open-hole laminate configurations, it was found that the design allowables obtained from the analysis correctly predicted the laminate test data within the confidence interval. The potential of the present simulation to substitute the laminate tests was demonstrated well.

The gene expression programming method to generate an equation to estimate fracture toughness of reinforced concrete

  • Ahmadreza Khodayari;Danial Fakhri;Adil Hussein, Mohammed;Ibrahim Albaijan;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Ahmed Babeker Elhag;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • Complex and intricate preparation techniques, the imperative for utmost precision and sensitivity in instrumentation, premature sample failure, and fragile specimens collectively contribute to the arduous task of measuring the fracture toughness of concrete in the laboratory. The objective of this research is to introduce and refine an equation based on the gene expression programming (GEP) method to calculate the fracture toughness of reinforced concrete, thereby minimizing the need for costly and time-consuming laboratory experiments. To accomplish this, various types of reinforced concrete, each incorporating distinct ratios of fibers and additives, were subjected to diverse loading angles relative to the initial crack (α) in order to ascertain the effective fracture toughness (Keff) of 660 samples utilizing the central straight notched Brazilian disc (CSNBD) test. Within the datasets, six pivotal input factors influencing the Keff of concrete, namely sample type (ST), diameter (D), thickness (t), length (L), force (F), and α, were taken into account. The ST and α parameters represent crucial inputs in the model presented in this study, marking the first instance that their influence has been examined via the CSNBD test. Of the 660 datasets, 460 were utilized for training purposes, while 100 each were allotted for testing and validation of the model. The GEP model was fine-tuned based on the training datasets, and its efficacy was evaluated using the separate test and validation datasets. In subsequent stages, the GEP model was optimized, yielding the most robust models. Ultimately, an equation was derived by averaging the most exemplary models, providing a means to predict the Keff parameter. This averaged equation exhibited exceptional proficiency in predicting the Keff of concrete. The significance of this work lies in the possibility of obtaining the Keff parameter without investing copious amounts of time and resources into the CSNBD test, simply by inputting the relevant parameters into the equation derived for diverse samples of reinforced concrete subject to varied loading angles.

Study on the Evaluation of Fracture Toughness at Welded Zone for the Pipe Steel by $CO_2$ Gas Welding ($CO_2$가스 배관용접부의 파괴인성평가에 관한 연구)

  • Na, Ui-Gyun;Yu, Hyo-Seon;O, Seok-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1817-1825
    • /
    • 2000
  • The purpose of this study is to examine the fracture toughness of the welded pipe from the viewpoint of FATT for the S38 and S42 steels used widely as the pipe material. Post weld heat treatment(PW HT) was carried out like following conditions: temperature of 67$0^{\circ}C$, I hour of holding time and cooling in furnace. Fracture toughness was obtained by measuring the crack opening displacement(COD) of the notched specimens over the range of temperature from -14$0^{\circ}C$ to -$25^{\circ}C$. Hardness values at fusion line near around were the highest and the microstructures at welded zone were coarsened. Regardless of the pipe materials, COD and temperature curves of the as-welds were moved toward higher temperature compared with those of the parents. However, COD and temperature curves of the PWHT specimens were positioned at lower temperature compared with those of the as-welds. The more heat input causes to decrease the COD values at the constant temperature. It was verified through the recrystallization treatment that PWHT was attributed to move toward lower temperature region considerably due to the improved plastic deformation at the same applied COD value of 0.3mm and softening effect. In case of the weldment of S38 steel, cleavage fracture was observed at -105$^{\circ}C$ unlike the structural steels, in which brittle fracture mode was generally shown at - 196$^{\circ}C$.