• 제목/요약/키워드: Notched Strength Evaluation

검색결과 20건 처리시간 0.036초

SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가 (The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen)

  • 강지웅
    • 한국안전학회지
    • /
    • 제29권5호
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

영역피해모델에 의한 균열 및 노치의 피로강도평가 (Inherent Damage Zone Model for fatigue Strength Evaluation of Cracks and Notches)

  • 김원범;백점기;승본유기부
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.494-503
    • /
    • 2006
  • Inherent damage zone model is presented to explain the fatigue properties near the fatigue limit and the crack growth threshold consistently Inherent damage zone model assumes that the stress at a point which is located at a small distance, $r_0$, an inherent length of the material that represents the size of effective damage zone, from the crack initiation position governs the fatigue characteristics regardless of the geometric configuration of the specimen; smooth specimen, notched specimen or cracked specimens with short and long crack length. A special feature of the paper is using the exact stress distributions of notched and cracked specimens at the strength evaluations. Analytical elastic solutions by Neuber and Westergaard are employed for this purpose Relationship between fatigue limit of smooth specimen and threshold stress of cracked specimen, occurrence condition of non-propagating crack at the root of elliptic notch and circular hole and relationship between stress concentration factor and fatigue notch factor are discussed quantitatively based on the proposed model.

Evaluation of Fracture Behavior of SA-516 Steel Welds Using Acoustic Emission Analysis

  • Na, Eui-Gyun;Ono, Kanji;Lee, Dong-Whan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.197-204
    • /
    • 2006
  • The purpose of this study is to evaluate the AE characteristics for the basemetal, PWHT (post-weld heat treatment) and weldment specimens of SA-516 steel during fracture testing. Four-point bending and AE tests were conducted simultaneously. AE signals were emitted in the process of plastic deformation. AE signal strength and amplitude of the weldment was the strongest, followed by PWHT specimen and basemetal. More AE signals were emitted from the weldment samples because of the oxides, and discontinuous mechanical properties. AE signal strength and amplitude for the basemetal or PWHT specimen decreased remarkably compared to the weldment because of lower strength. Pre-cracked specimens emitted even lower event counts than the corresponding blunt notched specimens. Dimple fracture from void coalescence mechanism is associated with low-level AE signal strength for the basemetal or PWHT. Tearing mode and dimple formation were shown on the fracture surfaces of the weldment, but only a small fraction produced detectable AE.

금속기 복합재료의 피로강도 평가에 관한 연구 (A Study on the Fatigue Strength Evaluation of Metal Matrix Composite)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.41-53
    • /
    • 1994
  • In this paper, rotating-bending fatigue tests of the SiC-whisker- reinforced 6061-T6 aluminum alloy and 6061-T6 alumiunm alloy made by power metallurgy were carried out to investigate the fatigue characteristics of plain and notched specimens at room temperature. The fatigue mechnisms in both materials were clarified through successive surface observations using the plastic replica method. In the case of the SiC-whisker-reinforced composites, there are whisker rich and poor zones and the fatigue crack is nucleated from the end of whiskers near the boundary. On the other hand, in the case of the 6061-T6 aluminum alloy, the fatigue crack is nucleated from defects and propagates by shear. Moreover, the results were discussed based on linear notch mechanics.

  • PDF

유한요소법과 초음파 메카트로닉스 시스템에 의한 강도적 불균질 이음부의 노치위치에 따른 균열발생 한계 조건 (Evaluation of Notch Location Effect on Ductile Crack Initiation at Strength Mismatched Joints by Finite Element Method and Ultrasonic-Mechatronics System)

  • 안규백;방한서;풍전정남
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.87-92
    • /
    • 2005
  • It has been well hewn that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using a two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, on the critical condition for ductile fracture initiation usinga two-parameter criterion. Fracture initiation testing has been conducted under static loading using notched round bar specimens which had different notch locations. This study provides the fundamental clarification of the effect of strength mismatching and effect of notch location on the critical condition to ductile crack initiation from notch root using fuite element method and ultrasonic-mechatronics system. The critical condition of ductile crack initiation from notch root of strength mismatched tensile specimens under static loading appeared to be almost the same as those of homogeneous tensile specimens with circumferential sharp notch specimen. Also, the effect of notch location in mismatched specimens was estimated using finite element(FE) analyses.

ENF 시험편을 이용한 평직 CFRP의 층간파괴인성 및 AE 특성 평가 (The Evaluation of Interlaminar Fracture Toughness and AE Characteristics in a Plain Woven CFRP Composite with ENF Specimen)

  • 윤유성;권오헌
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.117-123
    • /
    • 2006
  • Woven fabrics composites are used as primary structural components in many applications because of their superior properties that offer high specific strength and stiffness. However, the complexity of the fabric structure makes understanding of their failure behavior very difficult. Also, laminate woven fabrics CFRP have unique failure mechanisms such as fiber bridging, fiber/matrix crack and so on. In particular, the delamination phenomenon of the composite materials is one of the most frequent failure mechanisms. So, we estimated interlaminar fracture and damage in composites using as ENF specimen by a 3 point bending test. And AE characteristics were examined for crack propagation on plain woven CFRP. We obtained the following conclusions from the results of the evaluation of the 3 point bending fracture test and AE characteristic estimation. AE counts of maximum crack length were obtained as $85.97{\times}10^4\;and\;93{\times}10^3\;for\;a_0/L=0.3$ and 0.6, respectively. Also the maximum amplitudes were over 80dB at both $a_0/L=0.3\;and\;0.6$. $G_{IIc}$ at that's $a_0/L$ ratio were obtained with $1.07kJ/m^2\;and\;3.79kJ/m^2$.

  • PDF

유리섬유/알루미늄 혼성 적층판의 인장특성과 파괴인성 평가 (Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates)

  • 우성충;최낙삼
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.876-888
    • /
    • 2005
  • Tensile properties and fracture toughness of monolithic aluminum, fiber reinforced plastics and glass fiber/aluminum hybrid laminates under tensile loads have been investigated using plain coupon and single-edge-notched specimens. Elastic modulus and ultimate tensile strength of GFMLs showed different characteristic behaviors according to the Al kind, fiber orientation and composition ratio. Fracture, toughness of A-GFML-UD which was determined by the evaluation of $K_{IC}$ and $G_{IC}$ based on critical load was similar to that of GFRP-UD and was much higher than monolithic Al. Therefore, A-GFML-UD presented superior fracture toughness as well as prominent damage tolerance in comparison to its constituent Al. By separating Al sheet from GFMLs after the test, optical microscope observation of fracture zone of GFRP layer in the vicinity of crack tip revealed that crack advance of GFMLs depended on the orientation of fiber layer as well as Al/fiber composition ratio.

Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete

  • Gali, Sahith;Subramaniam, Kolluru V.L.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.365-375
    • /
    • 2017
  • An experimental evaluation of crack propagation and post-cracking behavior in steel fiber reinforced concrete (SFRC) beams, using full-field displacements obtained from the digital image correlation technique is presented. Surface displacements and strains during the fracture test of notched SFRC beams with volume fractions ($V_f$) of steel fibers equal to 0.5 and 0.75% are analyzed. An analysis procedure for determining the crack opening width over the depth of the beam during crack propagation in the flexure test is presented. The crack opening width is established as a function of the crack tip opening displacement and the residual flexural strength of SFRC beams. The softening in the post-peak load response is associated with the rapid surface crack propagation for small increases in crack tip opening displacement. The load recovery in the flexural response of SFRC is associated with a hinge-type behavior in the beam. For the stress gradient produced by flexure, the hinge is established before load recovery is initiated. The resistance provided by the fibers to the opening of the hinge produces the load recovery in the flexural response.

선박용 프로펠러축 방식처리용 복합재료의 제조와 그 정적 및 피로특성 평가에 관한 연구 (A Study on the Processing of Anti-Corrosive Composites for Propeller Shaft of the Ship and the Evaluation of Its Static and Fatigue Properties)

  • 김윤해;왕지석;배창원
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.23-31
    • /
    • 1998
  • Kind 1 propeller shaft in ships is the shaft which is provided with effective measures against corrosion by sea water, or the shaft which is made of approved corrosion resistance materials. The propeller shaft other than specified above is Kind 2. Thus, this study is mainly concerned with the resistance to fatigue damage in sea water against stress concentrations due to the notches. The results obtained can be summarized as follows; (1) The stress increases with curing time, however, when the curing time reaches at 96 hours the stress becomes a constant value. The elongation decreases with curing time, however, when the curing time reaches at 48 hours the elongation becomes a constant value. Thus, in case of FRP coating on propeller shaft, it is necessary to cure for 48 hours at least. (2) The relation of $\sigma$$_n$-K$_t$ is to be classified into two parts, which is a part where fracture nominal stress, $\sigma$$_n$, decreases with increasing $K_t$, and a part where $\sigma$$_n$ is nearly constant independent of $K_t$. (3) According to a linear notch mechanics, the measure of severity controlling the fracture in notched FRP body is the notch root radius, $\rho$. The notched static strength of an arbitrary specimen will be estimated from $\sigma$$_{max}$ -1/$\rho$ curve. (4) Through the observation of cross section after fatigue test, the part of interface was kept good condition irrespective of loading conditions.

  • PDF

비선형 파괴역학 파라메터(J-적분)에 의한 강섬유보강 고강도콘크리트의 파괴인성 평가 (Evaluation of Fracture Toughness for Steel Fiber Reinforced High Strength Concrete by Non-linear Fracture Mechanics Parameter(J-integral))

  • 구봉근;김태봉
    • 대한토목학회논문집
    • /
    • 제13권1호
    • /
    • pp.25-37
    • /
    • 1993
  • 본 논문은 강섬유보강 콘크리트의 인성을 평가하기 위하여 비선형 파괴역학 파라메터의 하나인 J적분이 최대하중점 파괴기준이 적용될 때 휨시험으로부터 하중-처짐곡선으로부터 간편하게 사용될 수 있음을 설명하고, 강섬유로 보강된 고강도콘크리트를 대상으로 노치를 가진 휨시험편을 제작하여 3점 재하실험을 실시하고, 그것으로부터 $J_{IC}$와 선형파괴역학 파라메터인 $K_{IC}$$G_{IC}$를 얻고 각각을 비교 고찰하였다. 그 결과, 강섬유보강 콘크리트의 파괴인성을 평가하기 위해서는 $J_{IC}$$K_{IC}$$G_{IC}$보다 더 효과적임을 알 수 있었다. 또한 강섬유 혼입률 0.5% 이하에서는 고강도콘크리트의 인성의 증진효과가 거의 없었으나, 섬유혼입률 1.0% 이상에서는 $J_{IC}$가 뚜렸한 증가를 보이고 있어 콘크리트의 개선된 인성특성을 잘 나타내고 있었으며. $K_{IC}$$G_{IC}$는 그렇지 못하였다. 그러나, $J_{IC}$의 정량화에 이용하는 공시체의 크기는 $J_{IC}$의 계산에 필요한 최대강도점에서 포텐셜에너지의 변동이 적고 시험편의 취급도 간편한 공시체의 선택이 필요하며, $J_{IC}$ 의 실험적 평가에 의해서 얻어지는 결과는 최대하중점에서 얻어짐으로 인하여 최대하중점의 선정에 아주 크게 좌우되는 문제점을 가지고 있다. 따라서, 강섬유 보강 콘크리트와 같은 비균질(非均質) 재료(材料)의 경우에는 균열의 진전과정(進展過程)이 불규칙적이므로 균열 발생점을 바르게 찾아내는 측정기술(測定技術)과 정도상(程度上)외 문제점을 포함하여, 파괴인성에 대한 좀 더 바람직한 평가방법 등이 이루어져야 할 것으로 판단된다.

  • PDF