• Title/Summary/Keyword: Notch resonator

Search Result 10, Processing Time 0.032 seconds

A Study on the Novel Rectangular Split Ring Notch Resonators

  • Xie, Tangyao;Kim, Gi-Rae;Choi, Young-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.365-369
    • /
    • 2010
  • In this paper, a novel notch resonator is proposed based on Rectangular Split Ring Resonator (RRSS) element. We represented the electrical characteristics for R-SRR elements coupled with microstrip line, and measured result is compared with electromagnetic simulation (HFSS) result. We also solved equivalent circuit for R-SRR element, and also discussed influences of change structural parameters of R-SRR. The size of R-SRR is the most important parameters for frequency tuning. Also we can make tunable resonator form the basic structure. This novel resonator can apply to design of tunable bandpass filter and voltage control oscillator.

Design of an Ultra-Wideband Antenna Using a Ring Resonator with a Notch Function

  • Lee, Jung-Nam;Kwon, Heon-Kook;Kang, Byung-Su;Lee, Kwang-Chun
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1075-1083
    • /
    • 2013
  • This paper describes an ultra-wideband (UWB) antenna that uses a ring resonator concept. The proposed antenna can operate in the entire UWB, and the IEEE 802.11a frequency band can be rejected by inserting a notch stub into the ring resonator. The experiment results indicate that the measured impedance bandwidth of the proposed antenna is 17.5 GHz (2.5 GHz to at least 20 GHz). The proposed UWB antenna has omnidirectional radiation patterns with a gain variation of 3 dBi (1 dBi to 4 dBi).

A Study on Characteristics of Microwave Transmission Line of Rectangular Split Ring Resonator (사각 분리형 링 공진기의 마이크로파 전송선로 특성 연구)

  • Kim, Girae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.25-30
    • /
    • 2010
  • In this paper, a novel notch resonator is proposed based on Rectanglar Split Ring Resonator (R-RSS) element. We represented the electrical characteristics for R-SRR elements coupled with microstrip line, and measured result is compared with electromagnetic simulation (HFSS) result. We also solved equivalent circuit for R-SRR element, and also discussed influences of change structural parameters of R-SRR. the size of R-SRR is the most important parameters for frequency tuning. Also we can make tunable resonator form the basic structure. This novel resonator can apply to design of tunable bandpass filter and voltage control oscillator.

  • PDF

Modeling of non-ideal frequency response in capacitive MEMS resonator (정전 용량형 MEMS 공진기의 비이상적 주파수 응답 모델링)

  • Ko, Hyoung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • In this paper, modeling of the non-ideal frequency response, especially "notch-and-spike" magnitude phenomenon and phase lag distortion, are discussed. To characterize the non-ideal frequency response, a new electro-mechanical simulation model based on SPICE is proposed using the driving loop of the capacitive vibratory gyroscope. The parasitic components of the driving loop are found to be the major factors of non-ideal frequency response, and it is verified with the measurement results.

A Compact LTCC Dual-Band WLAN Filter using Two Notch Resonators

  • Park, Jun-Hwan;Cheon, Seong-Jong;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.168-175
    • /
    • 2013
  • This paper presents compact dual-band WLAN filter and filter module. They were developed by embedding all of the passive lumped elements into a LTCC substrate. In order to reduce the size/volume of the filter and avoid EM parasitic couplings between the passive elements, the proposed filter was designed using a 3rd order Chebyshev circuit topology and J-inverter transformation technology. The 3rd order Chebyshev bandpass filter was firstly designed for the band-selection of the 802.11b and was then transformed using finite transmission zeros technologies. Finally, the dual-band filter was realized by adding two notch resonators to the 802.11b filter circuit for the band-selection of the 802.11a/g. The maximum insertion losses in the lower and higher passbands were better than 2.0 and 1.3 dB with minimum return losses of 15 and 14 dB, respectively. Furthermore, the filter was integrated with a diplexer to clearly split the signals between 2 and 5 GHz. The maximum insertion and minimum return losses of the fabricated module were 2.2 and 14 dB at 2.4 - 2.5 GHz, and 1.6 and 19 dB at 5.15 - 5.85 GHz, respectively. The overall volume of the fabricated filter was $2.7{\times}2.3{\times}0.59mm^3$.

Design and implementation of Broadband Antenna/Diplexer for dual-band handsets (이중대역 단말기용 광대역 안테나 및 다이플렉서 설계 및 구현)

  • 김재호;김영태;박준석;천창율;임재봉;신재완;강현규;정중성;황희용
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.149-152
    • /
    • 2002
  • In this paper, We have designed an internal chip type-ceramic antenna and diplexer for dual-band handset applications. for increasing bandwidth, antennas used a meander line structure with L, C matching network. The designed diplexer is based on the multi-layered structure for the purpose of the LTCC applications. We have given a notch using resonator for elevated attenuation characteristics.

  • PDF

An Analysis of Three Port Ring Resonator for the Balun-BPF Characteristics (Balun-BPF 특성 구현을 위한 3-단자 링-공진기의 해석)

  • Kang, Seong-Jun;Park, Ung-Hee;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.436-441
    • /
    • 2008
  • In this paper, we derived the Y-parameter of the recently reported Balun-BPF with a dual mode ring resonator by using the network analysis method. Using the derived Y-parameter we verified that the Balun-BPF structure satisfy the balun conditions. In order to design the Balun-BPF with arbitrary characteristics using the standard BPF design method with ease we derived the immittance slope parameters of the dual mode ring resonator with a load. The notch frequencies are also predicted. By designing with the proposed equations, simulating with a circuit simulator, fabricated and measured a Balun-BPF we confirmed the validation of the equations. The measured data shows bandwidth of 71 MHz and insertion loss of 0.92 dB at the center frequency of 2.46 GHz. It shows the phase imbalance of $174{\sim}181$ degree and the magnitude imbalance within 0.5 dB.

Quadruple Band-Notched Trapezoid UWB Antenna with Reduced Gains in Notch Bands

  • Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • A compact ultra-wide band antenna with a quadruple band-notched characteristic is proposed. The proposed antenna consists of a slotted trapezoid patch radiator, an inverted U-shaped band stop filter, a pair of C-shaped band stop filters, and a rectangular ground plane. To realize the quadruple notch-band characteristic, a U-shaped slot, a complementary split ring resonator, an inverted U-shaped band stop filter, and two C-shaped band stop filters are utilized in this antenna. The antenna satisfies the -10 dB reflection coefficient bandwidth requirement in the frequency band of 2.88-12.67 GHz, with a band-rejection characteristic in the WiMAX (3.43-3.85 GHz), WLAN (5.26-6.01 GHz), X-band satellite communication (7.05-7.68 GHz), and ITU 8 GHz (8.08-8.87 GHz) signal bands. In addition, the proposed antenna has a compact volume of $30mm{\times}33.5mm{\times}0.8mm$ while maintaining omnidirectional patterns in the H-plane. The experimental and simulated results of the proposed antenna are shown to be in good agreement.

7-Pole HTS Bandpass Filter Using New Non-adjacent Coupling of Pseudo-lumped Element Resonators (의사 집중상수 소자 공진기의 새로운 비 인접 결합을 이용한 7-극 고온초전도 마이크로스트립 대역 통과 필터)

  • 전부경;김종헌;이찬주;민병철;최영환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1313-1321
    • /
    • 2000
  • This paper presents a novel HTS microstrip pseudo-lumped element resonator for the compact and simple filter design. A 7-pole bandpass filter with quasi-elliptic response is designed and fabricated using non-adjacent couplings between resonators. A seven-pole quasi-elliptic filter is fabricated using double sided YBCO on a LaAlO$_3$ substrate with thickness of 0.5 mm and dielectric constant of 23.5. The filter has an insertion loss of 0.8 dB at 20K, a bandwidth of 8 MHz at the center frequency of 1774 MHz, and an attenuation of 33 dB for the cut-off-band of 1 MHz.

  • PDF

Dual Band-notched Monopole Antenna for 2.4 GHz WLAN and UWB Applications (이중대역 저지특성을 가지는 2.4 GHz WLAN 및 UWB 겸용 모노폴 안테나)

  • Lee, Ki-yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.193-199
    • /
    • 2017
  • In the paper, a dual band-notched monopole antenna is proposed for 2.4 GHz WLAN (2.4 ~ 2.484 GHz) and UWB (3.1 ~ 10.6 GHz) applications. The 3.5 GHz WiMAX band notched characteristic is achived by a pair of L-shaped slots instead of the previous U-shaped slot on the center of the radiating patch, whereas the 7.5 GHz band notched characteristic is achived by C-shaped strip resonator placed near to the microstrip feed line. The measured impedance bandwidth (${\mid}S_{11}{\mid}{\leq}-10dB$) is 8.62 GHz (2.38 ~ 11 GHz) which is sufficient to cover 2.4 GHz WLAN and UWB band, while measured band-notched bandwidths for 3.5 GHz WiMAX and 7.5 GHz bnad are 1.13 GHz (3.15 ~ 4.28 GHz) and 800 MHz (7.2 ~ 8 GHz) respectively. In particular, it has been observed that antenna has a good omnidirectional radiation patterns and higher gain of 2.51 ~ 6.81 dBi over the entire frequency band of interest.