• Title/Summary/Keyword: Notch Depth

Search Result 112, Processing Time 0.025 seconds

Inspection of Welded Zone and Flat Plate Using Flexible ECA Probe (Flexible ECA Probe를 이용한 평판 및 용접부 검사)

  • Lee, Chang-Jun;Lee, Kyu Sung;Shin, Chung-Ho;Lee, Kyoung-Jun;Jang, Yoon Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.288-294
    • /
    • 2016
  • This paper aims to compare the ability to detect notch defects existing in the plate and welded area using a flexible ECA (eddy current array) probe with OmniScan MX and MS-5800E. The characteristics of signals with various frequencies and lift-offs were also compared. As a result, when signals of frequencies 500, 1000, and 1500 kHz were used, the amplitude of the signal increased, as the depth of the notch increased, but reduced linearly in accordance with the lift-off variation. In addition, the detection sensitivity of the weld defect was found to be closely related to the contact surface of the probe and specimen. In this paper, it was demonstrated that the detection sensitivity was excellent when the contact surface of the probe and the specimen was sufficient, but it was poor when the contact surface was insufficient.

A Study on the Bending Fatigue Strength of Sintering Spur Gear (소결치차의 피로강도에 관한 연구)

  • 류성기;김경모
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.28-33
    • /
    • 1994
  • It is very important to have exact informations on the properties and characteristics of the sintering material as a new material of machine elements. To study the sintering spur gear and the sintering specimen to be consisted of Fe-Cu-C, the constant stress amplitude fatigue test is performed by using an electrohydrolic survo-controlled pulsating tester. Consequently, the S-N curves are obtained and the fatigue strength is compared with flaw depth. Accordingly, this study presents the fatigue strength of sintering spur gears, the critical notch depth of sintering materials and the effects of flaw depth on the bending fatigue strength.

  • PDF

Small Fatigue Crack Measurement and Crack Growth Characteristics for Smooth and Notch Specimens (평활 및 노치재의 미소피로균열측정과 성장특성)

  • 이종형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 1993
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adopted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The characteristic of crack growth and crack closure is same as the case of a delay of crack growth caused by constant amplitude load for an ideal crack or single peak overload for a fatigue crack. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack depth is larger than the notch curvature radius.

A Study on the Fracture Characteristics of Pre-Cracked Fiber Reinforced Concrete (초기균열이 있는 강섬유보강 콘트리트의 파괴특성)

  • 곽기주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.53-63
    • /
    • 1992
  • To investgate the fracture behavior of the steel fiber reinforced concreate, the specimens with different steel fiber contents of 0.0%, 0.5%, 1.0%, 1.5%, were made and notched with differents notch depth ratios of 0.0,0.2, 0.4, 0.6, and the three point bend tests were followed. Test results of 16 different types of above combined specimens were summarized as follows. 1.The load line deflection contents were found to increase 5%, 16%, 19%, respectively, compared to the unnotched specimen with the increased of initial notch depth ratio to 0.2,0.4, 0.6, respectively. 2.The frexural strength were found to decrease 14%, 16%, 21 %, respectively, compared to the unnotched specimen with the increase of initial notch depth ratio to 0.2, 0.4, 0.6,respectively. 3.The stress intensity factors of the steel fiber reinforced concrete were found to increase 1.1 1.5 1.9 times, respectively, compared to the concrete with no steel fiber content with the increase of fiber content to 0.5%, 1.0%, 1.5%, respectively. 4.The influence of the mass of the steel fiber reinforced concrete to the whole fracture energy was found to be minor with 6~8 % contribution. 5.The fracture energy of the steel fiber reinforced concrete, considering the load-deflection curve and concrete mass was found to be approximately 350-380kg m/m$^2$. 6.The regression analysis through the relationship between the compressive(Oc)/tensile (OT) strength and fracture energy(Gf) showed that the fracture energy of the steel fiber reinforced concrete could be predicted as follows. Gf= 19.2662 Oc - 3940.4 Gf= 246.876 OT- 6008.8

  • PDF

Fracture Behavior and Crack Growth of Concrete by The Nonlinear Fracture Mechanics (비선형 파괴역학에 의한 콘크리트의 파괴거동과 균열성장에 관한 연구)

  • 배주성;나의균
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • Concrete, a mixed material, has heterogeniety, anisotrophy and nonlinearity. Therefore, in its 'racture analysis, it is more reasonable to evaluate its fracture toughness by applying the concept of 'racture mechanics rather than the strength concept. Up to the present the concepts of fracture mechanics which were applied to concrete have been divided into two main classes. The one is the concept of linear elastic fracture mechanics and the other is the concept of elastic-plastic fracture mechanics. But it has been pointed out that there are many problems and irrationalities in applying the concept of linear elastic fracture mechanics to concrete. In this study, the J -integral method and the COD method mainly used in the analysis of nonlinear fracture mechanics, were introduced and the three point bending test was carried out for investigating the effects of the variation of the maximum aggregate size and notch depth on the fracture behavior and the crack growth of concrete, and the relationships of fracture energy and crack opening displacement. According to the results of this study the more the maximum aggregate size and the notch depth increased, the more the nonlinearity of load-deflection behavior was remarkable. The increase of the coarse aggregate size created the more ductility of concrete. Thus concrete showed the more stable fracture. As for the path of the crack growth, the more the coarse aggregate size increased, the more it was irregulary deviated from the straight line but it was not almost affected by the variation of the notch depth. Also, the fracture energy increased according as the coarse aggregate size increased and the notch depth decreased.

Feasibility of MFC (Macro-Fiber Composite) Transducers for Guided Wave Technique

  • Ren, Gang;Yun, Dongseok;Seo, Hogeon;Song, Minkyoo;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.264-269
    • /
    • 2013
  • Since MFC(macro-fiber composite) transducer has been developed, many researchers have tried to apply this transducer on SHM(structural health monitoring), because it is so flexible and durable that it can be easily embedded to various kinds of structures. The objective of this paper is to figure out the benefits and feasibility of applying MFC transducers to guided wave technique. For this, we have experimentally tested the performance of MFC patches as transmitter and sensors for excitation and reception of guided waves on the thin aluminum alloy plate. In order to enhance the signal accuracy, we applied the FIR filter for noise reduction as well as used STFT(short-time Fourier transform) algorithm to image the guided wave characteristics clearly. From the results, the guided wave generated based on MFC showed good agreement with its theoretical dispersion curves. Moreover, the ultrasonic Lamb wave techniques based on MFC patches in pitch-catch manner was tested for detection of surface notch defects of which depths are 10%, 20%, 30% and 40% of the aluminum plate thickness. Results showed that the notch was detectable well when the notch depth was 10% of the thickness or greater.

Optimal Design of Fluid Mount Using Artificial Life Algorithm (인공생명 알고리듬을 이용한 유체마운트의 최적설계)

  • 안영공;송진대;양보석;김동조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.598-608
    • /
    • 2002
  • This paper shows the optimal design methodology for the fluid engine mount by the artificial life algorithm. The design has been commonly modified by trial and error because there is many design parameters that can be varied in order to minimize transmissibility at the desired fundamental resonant and notch frequencies. The application of trial and error method to optimization of the fluid mount is a great work. Many combinations of parameters are possible to give us the desired resonant and notch frequencies, but the question is which combination Provides the lowest resonant peak and notch depth. In this study the enhanced artificial life algorithm is applied to get the desired fundamental resonant and notch frequencies of a fluid mount and to minimize transmissibility at these frequencies. The present hybrid algorithm is the synthesis of and artificial life algorithm with the random tabu (R-tabu) search method. The hybrid algorithm has some advantages, which is not only faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all globa1 optimum solutions. The results show that the performance of the optimized mount compared with the original mount is improved significantly.

Indole-3-Carbinol Promotes Goblet-Cell Differentiation Regulating Wnt and Notch Signaling Pathways AhR-Dependently

  • Park, Joo-Hung;Lee, Jeong-Min;Lee, Eun-Jin;Hwang, Won-Bhin;Kim, Da-Jeong
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.290-300
    • /
    • 2018
  • Using an in vitro model of intestinal organoids derived from intestinal crypts, we examined effects of indole-3-carbinol (I3C), a phytochemical that has anticancer and aryl hydrocarbon receptor (AhR)-activating abilities and thus is sold as a dietary supplement, on the development of intestinal organoids and investigated the underlying mechanisms. I3C inhibited the in vitro development of mouse intestinal organoids. Addition of ${\alpha}$-naphthoflavone, an AhR antagonist or AhR siRNA transfection, suppressed I3C function, suggesting that I3C-mediated interference with organoid development is AhR-dependent. I3C increased the expression of Muc2 and lysozyme, lineage-specific genes for goblet cells and Paneth cells, respectively, but inhibits the expression of IAP, a marker gene for enterocytes. In the intestines of mice treated with I3C, the number of goblet cells was reduced, but the number of Paneth cells and the depth and length of crypts and villi were not changed. I3C increased the level of active nonphosphorylated ${\beta}$-catenin, but suppressed the Notch signal. As a result, expression of Hes1, a Notch target gene and a transcriptional repressor that plays a key role in enterocyte differentiation, was reduced, whereas expression of Math1, involved in the differentiation of secretory lineages, was increased. These results provide direct evidence for the role of AhR in the regulation of the development of intestinal stem cells and indicate that such regulation is likely mediated by regulation of Wnt and Notch signals.

A Modified Test Method for Determining the Fracture Energy of Concrete (콘크리트의 파괴(破壞)에너지 결정을 위한 수정시험방법(修正試驗方法))

  • Moon, Je Kil;Kim, Young Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 1990
  • RILEM proposed three point bend test to determine the fracture energy of concrete, but there is discrepancy between the theoritical and the experimental fracture energy of concrete by the influence of self-weight of concrete. This paper presents four point bend test using proving ring in order to take into account the influence of self-weight of concrete. The initial notch to beam depth ratio was varied from 0.2 to 0.6 in order to investigate the variation of fracture energy of concrete according to the variation of initial notch depth. The proposed four point bend test using proving ring was verified to be superior to three point bend test.

  • PDF

A Study on the Crack Growth Behavior and Fracture Criterion of Glass/Epoxy Composites (Glass/Epoxy 복합재료의 파괴조건 및 균열진전거동)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1681-1690
    • /
    • 1992
  • The effects of the stress ratio and the fiber orientation(0.deg./90.deg. and .+-.45.deg.) to the load direction on the fracture behavior of the glass/epoxy plain woven composites were studied. The tests were carried out using compact tension specimens under both static and fatigue loading. The values of $k_{a}$ obtained from the energy release rate are independent of notch depth(a/w=0.2~0.6) for the 0.deg./90.deg. specimens, but decreases with an increase in a/w for the .+-.45.deg. specimens. And $k_{q}$ has higher values than $k_{ASTM}$ has been evaluated by the ASTM E399 test procedure. It is shown in the relation between fatigue crack growth rate da/dN and stress intensity factor range .DELTA.K using modified shape correction factor that da/dN decreases with a decrease in stress ratio and is lower for .+-..deg. specimens than for 0.deg./90.deg. These phenomena can be explained by the crack deflection to the load direction.n.n.