• Title/Summary/Keyword: Nose radius

Search Result 83, Processing Time 0.03 seconds

Characteristics Evaluation of Surface Roughness with Ultra Precision Machining (초정밀 절삭가공에서 표면거칠기 특성 평가)

  • 강순준;이갑조;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.83-88
    • /
    • 2003
  • In this study, experiments were conducted with an ultra-precision machine, developed In domestic, to find the characteristics and the most suitable cutting conditions of ultra-precision machining. To maximize the performance of the machine, the machine was installed in a room that is protected from vibration and is maintained constant temperature and constant humidity. Selected work pieces are an aluminum-alloyed material, which has excellent corrosion resistance and has low deformation. The used tool is synthetic poly crystal diamond which has excellent abrasion resistance and has low affinity. Four types of tool nose radius were used such as 0, 0.1, 0.2 and 0.4mm. Machining is performed with cutting speed of 500, 800 and 1000m/min., feed rate of 0.005, 0.008, 0.010mm/rev. and cutting depth of 0.0005, 0.0025 and 0.005mm respectively which can generally be used in the field as a cutting condition. As a method of evaluation surface roughness was measured for each cutting condition and reciprocal characteristics are computed for each tool nose radius, cutting speed, feed rate and cutting depth. As a result the most suitable cutting condition and characteristics of ultra-precision machining were identified which can usefully be applied in the industrial field.

  • PDF

Characteristics Evaluation of Surface Roughness with Ultra Precision Machining (초정밀 절삭가공에서 표면 거칠기 특성 평가)

  • 강순준;김종관
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • In this study, experiments were conducted with an ultra-precision machine, developed in domestic, to find the characteristics and the most suitable cutting conditions of ultra-precision machining. To maximize the performance of the machine, the machine was installed in a room that is protected from vibration and is maintained constant temperature and constant humidity. Selected work pieces are an aluminum-alloyed material, which has excellent corrosion resistance and has low deformation. The used tool is synthetic poly crystal diamond, which has excellent abrasion resistance and has low affinity. Four types of tool nose radius were used such as 0, 0.1, 0.2 and 0.4mm. Machining is performed with cutting speed of 500, 800 and 1000m/min., feed rate of 0.005, 0.008, 0.010mm/rev. and cutting depth of 0.0005, 0.0025 and 0.005mm respectively which can generally be used in the field as a cutting condition. As a method of evaluation, surface roughness was measured for each cutting condition, and reciprocal characteristics are computed for each tool nose radius, cutting speed, feed rate and cutting depth. As a result, the most suitable cutting condition and characteristics of ultra-precision machining were identified which can usefully be applied in the industrial field.

A Study on the Surfaces Machining Characteristics of Ultra-precision through SEM Measurement (SEM 측정법에 의한 초정밀 표면가공 특성연구)

  • 강순준;오상록;이갑조;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.34-41
    • /
    • 2004
  • The purpose of this paper is to look at the characteristics of surface finishing which is one of the form accuracies and to obtain the fundamental technical data from the process of machining with diamond tool through experiment and theoretical analysis. The experiments were conducted with domestic made ultra-precision machine and MCD.PCD tool, with aluminum alloyed material and brass being used for the work pieces. The goal of the size accuracy was set to 100nm. The most suitable tool nose radius and machining conditions were selected, and the variations of the surface roughness were observed using SEM method while machining the distance of up to 500km. These data were evaluated and they examined the variation of the machined surfaces while cutting up to 500km of machining distance. At the same time, the state for the wear of diamond tool nose was analyzed and carefully examined through the newest measuring device. Additionally, the characteristics of ultra-precision machining technology were studied through visual analysis.

  • PDF

Generation of Tool Paths for NC Machining of 3D Surfaces by Measurement Data (3차원 측정 곡면의 효율적인 NC 가공을 위한 공구 경로 생성)

  • 구영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.207-212
    • /
    • 1997
  • The purpose of this study is the development of CAM system which can cut and measure any shape by machining center and coordinate measuring machine. The overall goal of the CAM system is to achieve the CNC machining, from digitizing through to final cutting. The hardware of the system comprises PC and machining center, CMM. There are three steps in the CNC machining, (1) workpiece measuring on the CMM, (2) geometric modeling by the CAD system, (3) NC commands generation by the tool path compensated for tool nose radius. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

  • PDF

A Study on the Characteristics of Ultra Precision Machining of a Al Cone Mirror (Al 원추경 초정밀가공 특성에 관한 연구)

  • 현동훈;조언정;이승준;권용재;김영찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.397-401
    • /
    • 2003
  • In this work, diamond turning process is used to produce mirror surface on a Al cone. The Al cone as used as a mirror which can reflect a laser beam without scattering and, hence, it is critical to minimize the surface roughness of a Al cone. During diamond turning, feedrate and tool nose radius are changed to investigate characteristics of the ultra precision machined surface of a Al cone. A laser beam of 633 nm is applied to examine the effect of surface roughness on the characteristics of reflectivity. It is found that surface roughness is not significantly affected by feedrate. The main factor influencing surface roughness is tool nose radius. The line patterns of reflected laser beams show that the minimum surface roughness of 0.08 $\mu\textrm{m}$ (Ra) is required to avoid scattering phenomena of reflectivity.

  • PDF

Effect of Cooling Method on Surface Roughness in Turning (선삭가공에서 표면 거칠기에 미치는 냉각방법의 영향)

  • Kim, Yeong-Duck
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.87-93
    • /
    • 2011
  • CNC lathe machining has been widely used for parts machining of vehicles, aircraft, ships, electronics, etc. because cost savings for shortening processing time and increasing productivity are great. In this study, the purpose is to investigate the effect of cooling methods such as oil mist, water-soluble cutting oils on the workpiece surface roughness with the cutting speed, cutting depth, tool nose radius and feed rate of CNC lathe machine as a parameter in the cutting process of the aluminum alloy 2024 which is used a lot recently on aircraft parts. It is found that oil mist is coolant and water-soluble cooled by cutting the experimental conditions, cutting speed and cutting depth without effecting the surface roughness value was constant.

A Study on the Development of Machining and Measuring System for CNC Lathe (CNC 선반가공 및 자동 측정시스템 개발에 관한 연구)

  • Kim, Jeong-soon;Koo, Young-hae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.83-90
    • /
    • 2000
  • The purpose of this study is the development of CAM system which can machine and measure any shape by CNC lathe. The overall goal of the CAM system is to achieve the CNC lathe machining, from roughing through to final measuring, The hardware of the system comprises PC, CNC lathe and measuring tools. There are three steps in the CNC lathe machining and measuring, (1) geometric modeling by the shape patterns, (2) NC commands generation by the tool path compensated for tool nose radius, (3) machining and workpiece measuring on the lathe. It is developed a software package, with which we can conduct a micro CAM system in the PC without economical burden.

  • PDF

A Study on the Development of CAM System for CNC Lathe Machining (CNC 선반 가공용 CAM 시스템 개발에 관한 연구)

  • 구영희;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.438-442
    • /
    • 1997
  • The pupose of this study is the development of CAM system which can cut any shape by CNC lathe.. The overall goal of the CAM system is to achieve the CNC lathe machining, form roughing through to final measuring. The hardware of the system comprises PC and CNC lathe. There are three steps in the CNC lathe machining, (1) geometric modeling by the shape patterns, (2) NC commands generation by the tool path compensated for tool nose radius,(3) machining and workpiece measuring on the lathe. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

  • PDF

A Study on the Precision Cutting Characteristics by the Diamond Tool on the Cutting Distance (다이아몬드 공구의 절삭거리에 따른 정밀가공 특성 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.127-133
    • /
    • 1998
  • This research intends to gain the sight for the qualitative characteristics of precision cutting by using the CNC lathe with a mono-crystal diamond(MCD) and a poly-crystal diamond(PCD) tool on the cutting distance. In case of an MCD tool, as the cutting distance increases, the surface roughness becomes worse and the standard deviation of surface roughness is small. In case of a PCD tool, as the cutting distance increases, the surface roughness becomes stable with a large standard deviation. The cutting force ratio(Ft/Fn) decreases as the nose radius increases and the decreasing ratio becomes larger for small nose radius.

  • PDF

Influence of CBN Tool Geometry on Cutting Characteristics of High Hardened Steel (CBN 공구의 형상이 고경도강의 절삭특성에 미치는 영향)

  • 문상돈;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.25-30
    • /
    • 2001
  • The purpose of this investigation is experimentally to clarify the machinability and optimum tool geometry on milling of hardened STD11 steel. In the finish process office milling of high hardened STD11 steel by CBN tool, the optimum tool shape is suggested, which can minimize the tool fracture and chipping by impact. It is measured that cutting farce, tool wear and surface roughness generated during single-insert face milling using various geometric CBN tools. It has been found that the optimal chamfer angle of CBN tool is about -$25^{\circ}C$ and the suitable chandler width is 0.2mm. The nose radius of tool is the most excellent at 1.2mm in the viewpoint of tool wear and surface roughness.

  • PDF