• Title/Summary/Keyword: Northern Blot

Search Result 534, Processing Time 0.024 seconds

Molecular Characterization of Hypernodulation in Soybean

  • Van, Kyu-Jung;Ha, Bo-Keun;Hwang, Eun-Young;Kim, Moon-Young;Heu, Sung-Gi;Lee, Suk-Ha
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.24-29
    • /
    • 2003
  • SS2-2, a hypernodulating soybean mutant was isolated by EMS mutagenesis from Sinpaldalkong 2. This auto-regulation mutant showed greater number of nodules and smaller plant size than its wild type Sinpaldalkong 2. SSR markers were used to identify DNA variation at SSR loci from different soybean LG. The only SSR marker that detected a length polymorphism between SS2-2 and its wild type ancestor was Satt294 on LG C1 instead of LG H, locating a hypernodulating gene. Sequencing data of flanking Satt294 indicated that the size variation was due to extra stretch of TTA repeats of the SSR motif in SS2-2, along with $A\longrightarrow$G transversion. In spite of phenotypic differences between the wild type and its hypernodulating mutants, genomic DNA poly-morphisms at microsatellite loci could not control regulation of nodule formation. The cDNA-AFLP method was applied to compare differential display of cDNA between Sinpaldalkong 2 and SS2-2. After isolation and sequence comparison with many AELP fragments, several interesting genes were identified. Northern blot analysis, immunolocalization and/or the yeast two-hybrid system with these genes might provide information on regulation of nodule development in SS2-2.

Cloning and mulecular characterization of a nprX gene of bacillus subtilis NS15-4 encoding a neutral protease (Cloning and Molecular Characterization of a nprX gene of Bacillus subtilis NS15-4 Encoding a Neutral protease)

  • Lee, Seung-Hwan;Yoon, Ki-Hong;Nam, Hee-Sop;Oh, Tae-Kwang;Lee, Seog-Jae;Chae, Keon-Sang
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.68-73
    • /
    • 1996
  • An nprX gene of Bacillus subtilis NS15-4 encoding a neutral protease was cloned and its molecular characteristics were analyzed. The complete nucleotide sequence indicated that there is an open reading frame (0RF) possibly encoding 521 amino acid polypeptide. The ORF used all codons expected two cysteine and a proline having a codon bias index (CBI) of 0.09 in Escherichia coli. There were homologous sequences to the consensus sequence of -35 and -10 regions of E. coli promoters and to a Shine-Dalgarno (SD) sequence located 25 bp downstream of a mojor transcription initiation site. Moreover, there were also five minor transcription initiation sites at 6. 7. 8. 14 and 15 nt downstream of the major site. Northern blot analysis revealed the presence of about 1.8 kb mRNA transcript in E. coli having the nprX gene. The nucleotide sequence was identified in GenBank to be a gene for a neutral protease of B. sutilis with six nucleotide difference in the ORF region. The flanking regions of the NprX ORF showed much more differences form those of other neutral protease genes except the nprE gene of B. subtilis, which has the most homology to the nprX gene, and of which the flanking regions were identical to those of the nprX gene.

  • PDF

Stable Inheritance of Bovine $\beta$-Casein/Bovine Growth Hormone Fusion Gene in Transgenic Mice (형질전환 생쥐에서 Bovine $\beta$-Casein/Bovine Growth Hormone 재조합 유전자의 유전적 안정성에 관한 연구)

  • 최영희;오건봉;강용국;방남수;서길웅;이경광;이철상
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.3
    • /
    • pp.237-244
    • /
    • 1998
  • To investigate the fidelity of transgene transmission and expression, we produced transgenic mice carrying bovine $\beta$-casein/bovine grwoth hormone(bGH) fusion gene and examined transmission efficiency and expression level of the transgene in the founders and their progeny. The transgene was composed of 1.8 kb bovine $\beta$-casein promoter and 2.1 kb bGH gene. Ten transgenic mice were produced. Milk and mammary gland were collected from eight transgenic lines at 10-day lactation and a, pp.ied to Western and Northern blot analyses. The bGH expression was detected in four of them. The concentrations of bGH in milk were highly variable from 4$\mu\textrm{g}$/ml to 600$\mu\textrm{g}$/ml depending on the lines. The bGH mRNA level in mammary gland was closely correlated with the bGH concentration in milk in each transgenic line. These results indicated that bGH transgene expression was a, pp.opriately regulated in the mammary gland and secreted into milk in transgenic mice. By using two transgenic lines(#2, #7) secreting a considerable amoung of bGH into their milk, the inferitance and maintenance of transgenic phenotype were assessed in successive four generations. The mean transmission frequencies of transgene in lines #2 and #7 were 34% and 40%, respectively. The bGH concentration in milk were 80, 240, 120, 60$\mu\textrm{g}$/ml in each G0(generation 0), G2, G3, G4 generation of line #2 and 600, 1600, 860, 900$\mu\textrm{g}$/ml in each G1. G2, G3, G4 generation of line #7. These results demonstrated that bovine $\beta$-casein/bGH gene was stably transmitted from generation to generation in a Menelian fashion in trasgenic mice and consistenly expressed in their milk throughout the generations, although there was a little variation in the transmission frequency and expression level of the transgene between generations.

  • PDF

Analysis of Decorin Expression in the Uterine Endometrium during the Estrous Cycle and Pregnancy in Pigs

  • Choi, Yo-Han;Seo, Hee-Won;Kim, Min-Goo;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.95-101
    • /
    • 2010
  • Decorin (DCN) is a member of small leucine-rich proteoglycans which are ubiquitous components of the extracellular matrix. It regulates many physiological processes, such as matrix formation, collagen fibrillogenesis, angiogenesis, cancer growth, and cardiovascular diseases. It has been shown that DCN is expressed in the uterus during pregnancy and modulates implantation and decidualization for the establishment and maintenance of pregnancy in mice and humans. Expression of DCN in the uterine endometrium during pregnancy has not been investigated in pigs. Thus, this study investigated expression of DCN in the uterine endometrium during the estrous cycle and pregnancy in pigs. Uterine endometrial tissues were from day (D) 12 and 15 of the estrous cycle and D12, D15, D30, D60, D90, and D114 of pregnancy. Northern blot and real-time RT-PCR analyses showed that expression of DCN mRNA was detected throughout the estrous cycle and pregnancy with the highest levels during mid pregnancy. In situ hybridization analysis showed that DCN mRNA was localized to both luminal and glandular epithelia during the estrous cycle and pregnancy and also to chorionic membrane during mid pregnancy in pigs. To determine whether endometrial expression of DCN was affected by the somatic cell nuclear transfer (SCNT) procedure, DCN mRNA levels in the uterine endometrium from gilts with SCNT embryos on D30 of pregnancy were compared with those from gilts with normal embryos using real-time RT-PCR analysis. The result showed that DCN mRNA levels in the uterine endometrium were not significantly different between gilts with normal embryos and SCNT embryos. These results suggest that DCN may play an important role for endometrial tissue remodeling during mid pregnancy, and DCN expression is not affected by the SCNT procedure at the early stage of pregnancy in pigs.

Progesterone Effects on Microsomal Epoxide Hydrolase and Glutathione S-transferease mRNA Levels in Rats (랫드 간 Epoxide Hydrolase와 Glutathione S-Transferase 유전자 발현에 미치는 Progesterone의 효과)

  • Cho, Joo-Youn;Kim, Sang-Geon
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.233-241
    • /
    • 1996
  • Previous studies have shown that glucocorticoid suppresses microsomal epoxide hydrolase(EH) gene expression and that EH expression is altered during pregnancy. The effects of progesterone on the expression of rat EH and certain glutathione S-transferase(GST) genes were examined in this study. Northern RNA blot analysis revealed that progesterone was effective in increasing hepatic EH mRNA levels at 12 h to 48 h after treatment with a maximal 9-fold increase being noted at 12 h time point. Nonetheless, multiple daily treatment with progesterone rather caused minimal relative increases in EH mRNA levels. GST Ya and Yb1/2 mRNA levels were also transiently elevated at 12 h after progesterone treatment, followed by gradual decreases from the maximal Increases at day 1, 2 and 5 post-treatment. These changes in EH and GST mRNA levels were noted only at a relatively high dose of progesterone. Furthermore, immunoblot analyses showed that rats treated with progesterone for 5 days failed to show EH or GST induction, indicating that progesterone-induced alterations in EH and GST mRNA levels do not reflect bona fide induction of the detoxifying enzymes. Concomitant progesterone treatment of rats with the known EH inducers including ketoconazole and clotrimazole failed to additively nor antagonistically alter EH mRNA levels. In contrast, dexamethasone substantially reduced ketoconazole- or clotrimazole-inducible EH expression. These results showed that progesterone stimulates the EH, GST Ya and Yb1/2 gene expression at early times followed by marked reduction in the RNA levels from the maximum after multiple treatment and that the changes in mRNA do not necessarily reflect induction of the proteins.

  • PDF

Cloning and Characterization of the pyrH Gene Encoding UMP-Kinase from Lactobacillus reuteri ATCC 55739

  • PARK JAE-YONG;NAM SU JIN;KIM JONG-HWAN;JEONG SEON-JU;KIM JUNG KON;HA YEONG LAE;KIM JEONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.525-531
    • /
    • 2005
  • From a genomic library of Lactobacillus reuteri ATCC 55739, one clone, NE347, carrying a pyrH gene encoding UMP kinase, was identified. pNE347 carried a 1.88 kb EcoRI fragment and the pyrH was located in the middle of the insert. pyrH ORF was 723 bp in size and capable of encoding UMP kinase composed of 240 amino acid residues. tsf encoding an elongation factor-Ts and frr encoding a ribosomal recycling factor were present upstream and downstream of pyrH, respectively. When introduced into E. coli KUR1244, a pyrH-negative strain, pNE347 restored the ability to grow at $42^{\circ}C$, indicating that pyrH from L. reuteri synthesized functional UMP kinase in E. coli. Northern blot experiment showed that pyrH and frr were cotranscribed as a 1.4 kb single transcript. pyrH was overexpressed in E. coli by using a pET26b(+) vector, and a major 25 kDa protein band appeared on SDS-polyacrylamide gel.

The effect of five osteotropic factors on osteoprotegerin mRNA expression in gingival fibroblasts

  • Ko, Young-Kyung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.395-404
    • /
    • 2008
  • Purpose: Osteoprotegerin (OPG) is a secreted glycoprotein and a member of the tumor necrosis factor (TNF) receptor family that inhibits bone resorption by suppressing osteoclastogenesis. Gingival fibroblasts (GF) play a role in periodontal disease progression, and the purpose of this experiment was to evaluate influence of osteotropic factors on the expression of osteoprotegerin mRNA in these cells. Materials and Methods: In this experiment, the influence of osteoclastogenic factors, interleukin-1 beta (IL-$1{\beta}$), TNF-$\alpha$, prostanglandin E2 ($PEG_2$). parathyroid hormone (PTH) and 1$\alpha$, 25-dihydroxyvitamin $D_3$ on the expression of osteoprotegerin mRNA in GF was studied by Northern blot hybridization. Results: As expected, $PEG_2$ tended to inhibit OPG levels and this was most prominent at 24 hours of culture with $10^{-7}M$ of $PEG_2$. TNF-$\alpha$ at 10ng/ml and also at 25ng/ml decreased OPG levels to almost 30% of the control at 24 hours. This contrasts with reports of increased OPG levels from osteoblast/stromal cells and gingival fibroblasts stimulated by TNF-$\alpha$. Decrease of OPG levels with $PEG_2$ and TNF-$\alpha$ suggests a pathway whereby these mediators exert their resorptive effects. However, OPG levels were increased almost 3-fold at 24 hours with IL-1$\beta$(1 to 15ng/ml) and increased 1.4 fold with 24-hour treatment of $10^{-7}M$ PTH. Conclusion: Increase of OPG levels suggests that these 'osteoclastogenic' factors act in more complex ways and may act to inhibit bone resorption in inflammatory periodontitis. This result supports the role of OPG as a negative feedback mechanism in osteoclastic activity.

Expression and Regulation of Gonadotropin-Releasing Hormone(GnRH) and Its Receptor mRNA Transcripts During the Mouse Ovarian Development

  • Shim, Chanseob;Khang, Inkoo;Lee, Kyung-Ah;Kim, Kyungjin
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.217-224
    • /
    • 2001
  • The present study examines the expression and regulation of gonadotropin-releasing hormone (GnRH) and its receptor (GnRH-R) mRNA levels during mouse ovarian development. A fully processed, mature GnRH mRNA together with intron-containing primary transcripts was expressed in the immature mouse ovary as determined by Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). The size of ovarian GnRH mRNA was similar to that of hypothalamus, but its amount was much lower than that in the hypothalamus. Quantitative RT-PCR procedure also revealed the expression of GnRH-R mRNA in the ovary, but the estimated amount was a thousand-fold lower than that in the pituitary gland. We also examined the regulation of ovarian GnRH and GnRH-R mRNA levels during the follicular development induced by pregnant mare's serum gonadotropin (PMSG) and/or human chorionic gonadotropin (hCG). Ovarian luteinizing hormone receptor (LH-R) mRNA was abruptly increased st 48 h after the PMSG administration and rapidly decreased to the basal level thereafter. Ovarian GnRH mRNA level was slightly decreased at 48 h after the PMSG administration, and then returned to the basal value. GnRH-R mRNA level began to increase at 24 h after the PMSG treatment, decreased below the uninduced basal level at 48 h, and gradually increased thereafter. HCG administration did not alter ovarian GnRH mRNA level, while it blocked the PMSG-induced increase in GnRH mRNA level. Taken together, the present study demonstrates that the expression of GnRH and GnRH-R mRNA are regulated by gonadotropin during follicular development, suggesting possible intragonadal paracrine roles of GnRH and GnRH-R in the mouse ovarian development.

  • PDF

Bisphenol A Bis(2,3-dihydroxypropyl) ether (BADGE.2H2O) Induces Orphan Nuclear Receptor Nur77 Gene Expression and Increases Steroidogenesis in Mouse Testicular Leydig Cells

  • Ahn, Seung-Won;Nedumaran, Balachandar;Xie, Yuanbin;Kim, Don-Kyu;Kim, Yong Deuk;Choi, Hueng-Sik
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.74-80
    • /
    • 2008
  • Bisphenol A bis (2,3-dihydroxypropyl) ether ($BADGE.2H_2O$) is a component of commercial liquid epoxy resins commonly used in the food-packing industry and in dental sealants. There is evidence that it has significant estrogenic activity. Nur77 plays a crucial role in the regulation of certain genes involved in LH-mediated steroidogenesis in testicular Leydig cells. It was previously demonstrated that Bisphenol A (BPA) stimulates Nur77 gene induction and steroidogenesis. In this study, we investigated the effects of $BADGE.2H_2O$ on Nur77 gene expression and steroidogenesis. Northern blot analysis showed that it increased the expression of Nur77 mRNA and protein, and transient transfection assays demonstrated that it increased the promoter activity and transactivation of Nur77. It also increased the expression of certain steroidogenic genes, such as StAR and $3{\beta}$-HSD. Finally, over-expression of a dominant negative Nur77 cDNA via adenoviral infection reduced $BADGE.2H_2O$-mediated progesterone biosynthesis. These results indicate that $BADGE.2H_2O$ disrupts testicular steroidogenesis by increasing Nur77 gene expression.

Analysis of Gene Expression in Benzo[a]pyrene-exposed Sebastes schlegeli using Differential Display Polymerase Chain Reaction (DD-PCR을 이용한 벤조피렌 노출 조피볼락의 차등 발현 유전자 분석)

  • Yum Seungshic;Woo Seonock;Choi Eunseok;Kim Sojung;Oh Rora;Lee Sukchan;Lee Taek Kyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • 오염물질의 노출에 의해 발현이 변화되는 유전자의 발굴은 외부환경 자극에 대한 적응이나 반응의 메커니즘을 알아내는뎨 중요한 정보를 제공하며, 오염물질에 반응하는 유전자는 환경오염을 감지하는 분자 마커로 개발될 수 있다. DD-PCR 기법은 차등 발현 유전자들을 발굴해내기 위한 유용한 방법으로 사용되어 왔고, 본 연구는 이 방법을 이용하여 벤조피렌에 반응하는 조피볼락 유전자들의 발굴을 목적으로 진행되었다. 간조직에서 추출한 RNA로부터 벤조피렌의 노출에 의해 발현 양이 달라진 12개의 클론을 발굴하였고, 그 염기서 열을 분석하였다. 또한 벤조피렌의 노출시간을 각각 6, 12, 24시간으로 달리한 조피볼락에서 12개의 클론 중 4개의 클론에 대해 northern blot 분석이 실시되었으며, 이들 모두 노출시간에 따 라 발현양이 증가 또는 감소하는 것이 확인되었다. 본 연구결과는 오염물질의 영향에 의한 유전자들의 발현에 관한 전반적인 지식을 제공하였고, 나아가 환경오염이나 외부 스트레스를 감지해 낼 수 있는 바이오마커의 개발을 위한 첫 단계로서의 정보를 제공할 수 있을 것으로 생각된다.