• Title/Summary/Keyword: North Equatorial Counter Current

Search Result 10, Processing Time 0.022 seconds

A Review on the Analysis of the Equatorial Current System and the Variability during the El Niño Period: Focusing on the Misconceptions in the Field of Secondary Education (적도 해류계 분석 및 엘니뇨 시기의 변동에 관한 논의: 중등 교육 현장의 관련 오개념을 중심으로)

  • Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.296-310
    • /
    • 2021
  • El Niño is a typical ocean and atmospheric interaction phenomenon that causes climate variability on a global scale, so it has been used as a very important teaching and learning material in the field of earth science. This study summarized the distribution and dynamics of the equatorial current system. The variability of the equatorial current system during the El Niño period and the associated misconceptions were also investigated. The North Equatorial Current, South Equatorial Current, and Equatorial Under Current significantly weaken during El Niño years. However, the variability of the North Equatorial Counter Current (NECC) during the El Niño period cannot be generalized because the NECC shows southward movement with weakening in the northern area and strengthening in the southern area, along its central axis. In the western Pacific, the NECC is further south during El Niño years, and thus, it has an eastward flow in the equatorial western Pacific. Our analysis of a mass media science article, a secondary school exam, and a survey for incumbent teachers confirmed disparate ideas about the equatorial current system's variability during El Niño periods. This is likely due to inaccurate interpretations of the existing El Niño schematic diagram and insufficient understanding of the equatorial current and wave dynamics.

Distribution of Catches and Condition of Fishing Ground for Tuna Purse Seine in the Western Pacific Ocean (서부태평양에서 다랑어 선망어업의 어획분포와 어장환경)

  • 김형석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.227-236
    • /
    • 1999
  • Temperal and spacial analysis for catches have been drawing up a catch distribution chart and analysing catches and CPUE(Catch Per Unit Effort) using catch data with purpose of obtaining basic data to establish a selective method of effective fishing the tuna purse seine fishing ground.The temperature profile section and catch was surveyed to analyse the effect of catch in relation to the fishing ground environment.The results are as follows ;1. As for the catch variation between 1983 and 1984, the catch mainly took place on150^{\circ}E$, and after that it moved eastward enlarging the range of catch. In the monthly catch variation between January and February, the catches mainly happened on 135$^{\circ}$~ 150$^{\circ}$E, and then moved to the gradually westward. However, from July it moved to the South and from October Southeast.2. As to the eatch ratio for the school associated with the drifted object, the pelagic migrating school and the school associated with the biological objects, the catch ratio for the school associated with the drift objects was the highest. The catch ratio for the school associated with the drifted object was high in June, July and November whiles between January and March for the pelagic migrating school.3. SST(Sea Surface Temperature) was around 28~29^C$ on the observing line of 137^{\circ}E$ and the catches took place in the north equatorial counter-current situated on around $5^{\circ}~6^{\circ}N$. SST in the northern summer was 1^C$higher than winter and it was about 29~30^C$. The catch happened with the center of north equatorial counter-current. The reason why the catch mainly took place on the north equatorial counter-current is that main catch of tuna purse seine was the school associated with drift objects. It is thought that the fishing grounds are made in waters that have many drift objects like drift logs from the coast.

  • PDF

The Characteristics of Physical Oceanographic Environments and Bottom Currents in the KODOS Study Area of the Northeastern Tropical Pacific (동태평양 KODOS 탐사해역에서의 물리해양환경 및 저층해류 특성)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul;Jeon, Dong-Chull;Kim, Ki-Hyune;Kwak, Chong-Heum;So, Seun-Seup
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.341-349
    • /
    • 2004
  • Hyrdography and deep currents were measured from 1997 to 1999 to investigate deep-sea environments in the KODOS (Korea Deep Ocean Study) area of the northeastern tropical Pacific. KODOS area is located meridionally from the North Equatorial Current to the boundary between the North Equatorial Current and the Equatorial Counter Current. Strong thermocline exists between 10 m and 120 m depths at the study area. Since that strong thermocline does hardly allow vertical mixing between surface and lower layer waters, vertical distributions of temperature, salinity, dissolved oxygen and nutrients drastically change near the thermocline. Salinity-minimum layer, which indicate the North Pacific Intermediate Water (NPIW) and the Antartic Intermediate Water (AAIW), vertically occupies vertically at the depths from 500 m down to 1400 m. The NPIW and the AAIW horizontally occur to the north and to the south of $7^{\circ}N$, respectively. The near-bottom water shows the physical characteristics of $1.05^{\circ}C$ and 34.70 psu at the depths of 10 m to 110 m above the bottom (approximately 4000-5000 m), which was originated from the Antarctic Circumpolar Water. It flows northeastwards for 2 to 4 months at the study area, and its mean velocity was 3.1-3.7 cm/s. Meanwhile, reverse (southwestward) currents appear for about 15 days with the average of 1.0-6.1 cm/s every 1 to 6 months. Dominant direction of the bottom currents obtained from the data for more than 6 months is northeastward with the average speeds of 1.7-2.1 cm/s. Therefore, it seems that deep waters from the Antarctica flow northwards passing through the KODOS area in the northeastern tropical Pacific.

Latitudinal Differences in the Distribution of Mesozooplankton in the Northeastern Equatorial Pacific

  • Kang, Jung-Hoon;Kim, Woong-Seo;Son, Seung-Kyu
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.351-360
    • /
    • 2004
  • To investigate latitudinal variations in the zooplankton community along the meridian line ($5^{\circ}N-12^{\circ}N$, $131.5^{\circ}W$), we measured temperature, salinity, nitrate, chlorophyll-a and zooplankton at depths above 200 m from July $10^{th}$ to $25^{th}$, 2003. For comparative analysis, data of the physico-chemical properties and chl-a were matched to the two sampling depths (surface mixed layer and thermocline depth-200 m) of zooplankton. Latitudinal differences in the mesozooplankton distribution were mainly influenced by divergence formed at a boundary line formed by currents of opposing directions, consisting of North Equatorial Current (NEC) and North Equatorial Counter Current (NECC). High concentrations of chl-a south of $9^{\circ}N$, caused by equatorial upwelling related nutrients, is thought to be affected by the role of this divergence barrier, supported by relatively low concentrations in waters north of $9^{\circ}N$. The latitudinal differences of the chl-a were significantly associated with the major groups of zooplankton, namely calanoid and cyclopoid copepods, appendicularians, ostracods, chaetognaths, invertebrate larvae, and others. And temperature significantly affected the latitudinal variation of radiolarians, siphonophores, salps and immature copepods. The latitudinal differences in the two factors, temperature and chl-a, which explained 71.0% of the total zooplankton variation, were characterized by the equatorial upwelling as well as the divergence at $9^{\circ}N$. The physical characteristics also affected the community structure and abundance of zooplankton as well as average ratios of cyclopoid versus calanoid copepods. The abundance of dominant copepods, which were consistent with chl-a, were often associated with the carnivorous zooplankton chaetognaths, implying the relative importance of bottom-up regulation from physical properties to predatory zooplankton during the study period. These results suggested that latitudinal distribution of zooplankton is primarily controlled by current-related divergences, while biological processes are of secondary importance in the northeastern Equatorial Pacific during the study period in question.

Hydrographic Structure Along $131.5^{\circ}W$ in the Northeastern Pacific in July-August 2005 (2005년 7-8월에 관측한 북동태평양 $131.5^{\circ}W$의 해수특성 및 해양구조)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.190-199
    • /
    • 2008
  • To investigate hydrographic structure and characteristics of the tropical ocean in the eastern and the western Pacific, CTD(Conductivity-Temperature-Depth) data along $131^{\circ}W$ and $137^{\circ}-142^{\circ}E$ in July-August 2005 were analyzed. Sea surface temperature along $131.5^{\circ}W$ in summer is highest in the Equatorial Counter Current(ECC) because of the high-temperature water greater than $28^{\circ}C$ moving through the ECC from the western Pacific to the eastern Pacific in spring and summer. Based on the evidence of the presence of low salinity and high dissolved oxygen water in the North Equatorial Current(NEC), we suggested that the low salinity water moved from the Gulf of Panama to the east of Philippine along the North Equatorial Current(NEC). The South Equatorial Current(SEC) had the most saline water from surface to deep layer because the saline water from the Subtropical South Pacific Ocean moved to the north. The salinity minimum layer was observed at 500-1500 m depth along $131.5^{\circ}W$. The water mass with the salinity minimum layer in the north of $5^{\circ}N$ came from the North Pacific Intermediate Water(NPIW) and that in the south of $5^{\circ}N$ came from the Antarctic Intermediate Water(AAIW), which was more saline than the NPIW. Cyclonic cold eddy with a diameter of about 200km was found in $4-6^{\circ}N$. Sea surface temperature along $131.5^{\circ}W$ in the eastern Pacific was lower than along $137^{\circ}-142^{\circ}E$ in the western Pacific; on the other hand, sea surface salinity in the eastern Pacific was higher than in the western Pacific. Subsurface saline water from the Subtropical South Pacific Ocean was less saline in the eastern Pacific than in the western Pacific. Salinity and density(${\sigma}_{\theta}$) of the salinity minimum layer south of $14^{\circ}N$ was higher in the eastern Pacific than in the western Pacific.

The Surface fCO2 Distribution of the Western North Pacific in Summer 2002 (2002년 여름 북서태평양 표층 해수의 이산화탄소 분포 특성)

  • Choi, Sang-Hwa;Kim, Dong-Seon;Shim, Jeong-Hee;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2006
  • We measured the fugacity of $CO_2$ $(fCO_2)$, temperature, salinity, nutrients and chlorophyll a in the surface water of the western North Pacific $(4^{\circ}30'{\sim}33^{\circ}10'N,\;144^{\circ}20'{\sim}127^{\circ}35'E)$ in September 2002. There were zonally several major currents which have characteristics of specific temperature and salinity (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; Kuroshio etc.). Surface $fCO_2$ distribution was clearly distinguished into two groups, tropical and subtropical areas of which boundary was $20^{\circ}N$. In the tropical Int surface $fCO_2$ was mainly controlled by temperature, while in the subtropical area, surface $fCO_2$ was dependent on total inorganic carbon contents. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-0.69{\sim}0.79 mmole\;m^{-2}day^{-1}$. In the area of AE (Anticyclonic Eddy), SM(Southern Mixed region) and NM (Northern Mixed region), the ocean acted as a weak source of $CO_2$ $(0.6{\sim}0.79 mmole\; m^{-2}day^{-1})$. In NECC, NEC, Kuroshio and ECS (East China Sea), however, the fluxes were estimated to be $-0.3mmole\; m^{-2}day^{-1})$ for the first three regions and $-1.2mmole\; m^{-2}day^{-1})$ for ECS respectively, indicating that these areas acted as sinks of $CO_2$. The average air-sea flux in the entire study area was $0.15mmole\;m^{-2}day^{-1})$, implying that the western North Pacific was a weak source of $CO_2$ during the study period.

Distribution and Inter-annual Variation of Nutrients (N, P, Si) and Organic Carbon (DOC, POC) in the Equatorial Thermocline Ridge, Northeast Pacific (북동태평양 적도 Thermocline Ridge 해역에서 영양염(질소, 인, 규소)과 유기탄소(용존 및 입자)의 분포 특성 및 연간 변화)

  • Son, Ju-Won;Kim, Kyeong-Hong;Kim, Mi-Jin;Son, Seung-Kyu;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • The distribution and inter-annual variation of nutrients (N, P, Si) and dissolved/particulate organic carbon were investigated in the equatorial thermocline ridge ($7^{\circ}{\sim}11.5^{\circ}N$, $131.5^{\circ}W$) of the northeast Pacific. From the Oceanic Nino Index and Multivariate ENSO Index provided by NOAA, normal condition was observed in July 2003 and August 2005 on the aspect of global climate/ocean change. However, La Ni$\~{n}$a and El Ni$\~{n}$o episodes occurred in July 2007 and August 2009, respectively. Thermocline ridge in the study area was located at $9^{\circ}N$ in July 2003, $8^{\circ}N$ in August 2005, $10^{\circ}N$ in July 2007, and $10.5^{\circ}N$ in August 2009 under the influence of global climate/ocean change and surface current system (North Equatorial Counter Current and North Equatorial Current) of the northeast Pacific. Maximum depth integrated values (DIV) of nutrients in the upper layer (0~100 m depth range) were shown in July 2007 (mean 21.12 gN/$m^2$, 4.27 gP/$m^2$, 33.72 gSi/$m^2$) and higher variability of DIV in the equatorial thermocline ridge was observed at $10^{\circ}N$ during the study periods. Also, maximum concentration of dissolved organic carbon (DOC) in the upper 50 m depth layer was observed in July 2007 (mean $107.48{\pm}14.58\;{\mu}M$), and particulate organic carbon (POC, mean $9.42{\pm}3.02\;{\mu}M$) was similar to that of DOC. Nutrient concentration in the surface layer increased with effect of upwelling phenomenon in the equatorial thermocline ridge and La Ni$\~{n}$a episode, which had formed in the central Pacific. This process also resulted in the increasing of organic carbon concentration (DOC and POC) in the surface layer. From these results, it is suggested that spatial and temporal variation of chemical and biological factors were generated by physical processes in the equatorial thermocline ridge.

The Distribution of Planktonic Protists Along a Latitudinal Transect in the Northeast Pacific Ocean (북동 태평양수역에서 위도에 따른 부유 원생동물의 분포)

  • Yang, Eun-Jin;Choi, Joong-Ki;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.287-298
    • /
    • 2004
  • As a part of Korea Deep Ocean Study program, we investigated the distribution of planktonic protists in the upper 200 m of the northeast Pacific from $5^{\circ}N$ to $17^{\circ}N$, along $131^{\circ}30'W$. Area of divergence was formed at $9^{\circ}N$ which is boundaries of the north equatorial counter current (NECC) and the north equatorial current (NEC) during this cruise. Chlorophyll-a concentration was higher in NECC than in NEC area. Pico chl-a(<$2\;{\mu}m$) to total chl-a accounted for average 89% in the study area. The contribution of pico chl-a to total chl-a was relatively high in NEC area than in NECC area. Biomass of planktonic protists, ranging from 635.3 to $1077.3\;mgC\;m^{-2}$(average $810\;mgC\;m^{-2}$), was most enhanced in NECC area and showed distinct latitudinal variation. Biomass of HNF ranged from 88.7 to $208.3\;mgC\;m^{-2}$ and comprised 15% of planktonic protists. Biomass of ciliates ranged from 123.6 to $393.0\;mgC\;m^{-2}$ and comprised 25% of planktonic protists. Biomass of HDF ranged from 407.2 to $607.8\;mgC\;m^{-2}$ and comprised 60% of planktonic protists. HDF was the most dominant component in both NECC and NEC areas. Nano-protist biomass accounted for more than 50% of total protists in the both areas. The contribution of nanoprotist to total protists biomass was relatively higher in NEC area than in NECC. The biomass of planktonic protists was significantly correlated with phytoplankton biomass in this study area. The size structure of phytoplankton biomass coincided with that of planktonic protists. This suggested that the structure of the planktonic protists community and the microbial food web were dependent on the size structure of the phytoplankton biomass. However, biomass and size structure of planktonic protist communities might be significantly influenced by physical characteristics of the water column and food concentration in this study area.

Distribution and Remineralization Ratio of Inorganic Nutrients in the Divergence Zone($7^{\circ}{\sim}10.5^{\circ}N$), Northeastern Pacific (북동태평양 발산대 해역($7^{\circ}{\sim}10.5^{\circ}N$)의 무기영양염 분포와 재무기질화 비율)

  • Son, Ju-Won;Kim, Kyeong-Hong;Kim, Mi-Jin;Son, Seung-Kyu;Chi, Sang-Bum;Hwang, Keun-Choon;Park, Yong-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.178-189
    • /
    • 2008
  • The distribution of inorganic nutrients and their remineralization ratio in the divergence zone ($7^{\circ}{\sim}10.5^{\circ}N$) of the northeastern Pacific were investigated from July 2003 to July 2007. A divergence zone along the boundary of the North Equatorial Counter Current (NECC) and North Equatorial Current (NEC) at $10^{\circ}N$ was observed in July 2007 when the La Nina event and divergence-related upwelling was strong. The mean depth of oligotrophic surface mixed layer in the divergence zone was 46, 61, and 30 m in July 2003, August 2005, and July 2007, respectively. Below the surface mixed layer, a nutricline was clearly observed. The depth integrated value of nitrate including nitrite (DIVn) in the upper layer($0{\sim}100$ m depth) ranged from 5.51 to 21.71 $gN/m^2$(mean 12.82 $gN/m^2$) in July 2003, from 5.62 to 8.46 $gN/m^2$ (mean 7.15 $gN/m^2$) in August 2005, and from 8.98 to 27.80 $gN/m^2$(mean 21.12 $gN/m^2$) in July 2007. The maximum DIVn was observed at the divergence zone. The distributions of phosphate(DIVp) and silicate(DIVsi) were similar to that of DIVn and the DIVn/DIVsi ratio was $0.87{\pm}0.11$ in the upper layer. The limiting nutrient for phytoplankton growth in the study area was identified as nitrogen(N/P ratio=14.6). The nitrate (including nitrite) concentrations were lower in the region mainly affected by NEC than in the region affected by NECC. The study area of low silicate concentrations was also considered to be Si-limiting environment. The remineralization ratios of nutrients were $P/N/-O_2=1/14.6{\pm}1.1/100.4{\pm}8.8(23.44{\leq}Sigma-{\theta}{\leq}26.38)$ in the study area. These ratios suggested remineralization process in the surface layer of divergence zone.

Development of Oceanic General Circulation Model for Climate Change Prediction (기후변화예측을 위한 해양대순환모형의 개발)

  • Ahn, Joong-Bae;Lee, Hyo-Shin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • In this study, Ocean General Circulation Model (OGCM) has been developed as a counterpart of Atmospheric General Circulation (AGCM) for the study of coupled ocean-atmosphere climate system. The oceanic responses to given atmospheric boundary conditions have been investigated using the OGCM. In an integration carried out over 100 simulated years with climatological monthly mean data (EXP 1), most parts of the model reached a quasi-equilibrium climate reproducing many of the observed large-scale oceanic features remarkably well. Some observed narrow currents, however, such as North Equatorial Counter Current, were inevitably distorted due to the model's relatively coarse resolution. The seasonal changes in sea ice cover over the southern oceans around Antarctica were also simulated. In an experiment (EXP 2) under boundary condition of 10-year monthly data (1982-1991) from NCEP/NCAR Reanalysis Project model properly reproduced major oceanic changes during the period, including El Ni$\tilde{n}$os of 1982-1983 and 1986-87. During the ENSO periods, the experiment showed eastward expansion of warm surface waters and a negative vertical velocity anomalies along' the equator in response to expansion of westerly current velocity anomalies as westerly wind anomalies propagated eastward. Simulated anomalous distribution and the time behavior in response to El Ni$\tilde{n}$o events is consistent with that of the observations. These experiments showed that the model has an ability to reproduce major mean and anomalous oceanic features and can be effectively used for the study of ocean-atmosphere coupling system.

  • PDF