• Title/Summary/Keyword: Normalized Jerk

Search Result 5, Processing Time 0.021 seconds

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

Relationship between Walking Speed and Smoothness of Movement (보행속력과 동작의 부드러움과의 상관관계에 관한 연구)

  • Tack, Gye-Rae;Han, Young-Min;Choi, Jin-Sung;Yi, Jeong-Han;Lim, Young-Tae;Jun, Jae-Hoon;Park, Sang-Kyoon;Stephanyshin, Darren;Park, Seung-Ha
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.11-17
    • /
    • 2006
  • The purpose of this study was to evaluate the smoothness of movement during various walking speeds. Based on the maximum smoothness theory (or the minimum jerk theory), we hypothesized that the walking speed at the maximum smoothness (or minimum normalized jerk) is the same as that at the minimum energy consumption. Eleven university students participated in treadmill walking experiment with 11 different walking speeds (1.11, 1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 211, 233, and 2.47m/sec). Normalized jerk at 15 markers and the center of mass was calculated. Results showed that there existed a quadratic relationship between the normalized jerk of the vertical direction at the center of mass and the walking speed As the walking speed increased, the normalized jerk of all directions at the heel decreased Our hypothesis that the previously published energetically optimal walking speed ($1.25\;{\sim}\;1.4m/s$) is the same as the minimum jerk speed (1.78m/s) did not agree with this result. The minimum normalized jerk at the center of mass occurred at the walking speed of 1.78m/s which was the preferred walking speed by subjects' questionaries. Further studies concerning the energetically optimal walking speed, preferred walking speed, and walk-run transition speed or run-walk transition speed are necessary based on actual energy consumption experiment and various multi-dimensional analysis.

The Difference in the Smoothness of the Movement according to Shoe, Velocity, and Slope during Walking (보행시 신발, 속도, 경사도에 따른 동작의 부드러움 차이)

  • Choi J.S.;Tack G.R.;Yi J.H.;Lee B.S.;Chung S.C.;Sohn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.169-170
    • /
    • 2006
  • The purpose of this study was to evaluate the smoothness of the gait pattern according to shoe, walking speed, and slope. Eleven male university students used three types(running shoes, mounting climbing boots, elevated forefoot walking shoes) of shoes at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2.0, 2.11, 2.33m/s) and gradients (0, 3, 6, 10%) on a treadmill. Three-dimensional motion analysis (Motion Analysis Corp, Santa Rosa, CA, USA) was conducted with 4 Falcon high speed cameras. The results showed that elevated forefoot walking shoes had the lowest value of normalized jerk at the heel, which means that elevated forefoot walking shoes had the smoothest walking pattern at the heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass (COM) at most walking speeds, which means that the smoothness of gait pattern at the center of mass is the lowest for the elevated forefoot walking shoes. This movement at the COM might even have a beneficial effect of activating muscles in the back and abdomen more than other shoes.

  • PDF

Changes of Walking Pattern for Young Adults dur ing Level Walking under Low Illumination (20대 남성의 낮은 조도의 평지 보행 시 보행 패턴 변화)

  • Choi, Jin-Seung;Kang, Dong-Won;Bang, Yun-Hwan;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.381-386
    • /
    • 2010
  • This study examined the changes in the walking pattern during level walking under low illumination conditions. Fourteen male subjects ($22.1{\pm}2.21$ years, $174{\pm}3.74\;cm$, $68.86{\pm}10.81\;kg$) with normal vision and no disabilities were enrolled in this study. All experiments were performed on a level walkway with three conditions: normal walking (preferred & low speed) and walking with low illumination. 3D motion capturing system was used for acquisition and analysis of the walking motion data with a sampling frequency of 120Hz. The walking speed, normalized jerk(NJ) at the center of mass(COM), wrist and heel, knee and elbow joint angle, ratio of the knee joint angle to elbow joint angle and the toe clearance on stance phase were used to compare the differences in walking pattern between the two illumination conditions, The results showed that the walking speed and joint angles decreased in low illumination, whereas the NJ and toe minimum clearance increased. In low illumination, most variables were similar to effects of low speed walking, but toe clearance was different from the effects of low speed. These results can be used as primary data for examining the changes in the level walking pattern of young adults under low illumination. Further study will be needed to compare these results in young adults with those in the elderly.

A Steering Wheel Angle Analysis of Old and Young Drivers in Right Turning at Intersection

  • Ryu, Tae-Beum;Min, Byung-Chan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.285-290
    • /
    • 2011
  • Due to the ageing-related degradation in physical and cognitive abilities, the elderly have difficulty in car driving and this is related to the high rate of car accidents among them. This study investigated the kinematic characteristics of old drivers' steering in right turning at intersections by comparing with young drivers. Thirteen old(60~70) and thirteen young(20~30) drivers who participated in the experiment turned their cars right side at intersections in a driving simulator. As results, the completion time of right turning at intersection of old drivers was larger than that of young drivers. The speeds of vehicle at the beginning and ending point of the right turning area of old drivers were smaller than those of young drivers, and also the steering angle at the ending point of the turning area of the former was smaller than that of the latter. The normalized jerk of old driver's steering was significantly larger than that of young drivers. These results indicate that old drivers modify their steering movement repeatedly and take the driving strategy of avoiding risks due to their reduced physical capabilities.