• 제목/요약/키워드: Normalized Difference Vegetation Index (NDVI)

검색결과 381건 처리시간 0.031초

Surface Emissivity Derived From Satellite Observations: Drought Index

  • Yoo, Jung-Moon;Yoo, Hye-Lim
    • 한국지구과학회지
    • /
    • 제27권7호
    • /
    • pp.787-803
    • /
    • 2006
  • The drought index has been developed, based on a $8.6{\mu}m$ surface emissivity in the $8-12{\mu}m$ MODIS channels over the African Sahel region (10-20 N, 13 W-35 W) and the Seoul Metropolitan Area (SMA: 37.2-37.7 N, 126.6-127.2 E). The emissivity indicates the $SiO_2$ strength and can vary interannually by vegetation, water vapor, and soil moisture, as a potential indicator of drought conditions. In a well-vegetated region close to 10 N of the Sahel, the Normalized Difference Vegetation Index (NDVI) showed high sensitivity, while the emissivity did not. On the other hand, the NDVI experienced negligible variability in a poorly vegetated region near 20 N, while the emissivity reflected sensitively the effects of atmospheric water vapor and soil moisture conditions. Seasonal variations of the emissivity (0.94-0.97) have been examined over the SMA during the 2003-2004 period compared to NDVI (or Enhanced Vegetation Index; EVI). Here, the dryness was more severe in urban area with less vegetation than in suburban area; the two areas corresponded to the north and south of the Han river, respectively. The emissivity exhibiting a significant spatial correlation of ${\sim}0.8$ with the two indices can supplement their information.

드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가 (Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV)

  • 류재현;오도혁;장선웅;정회정;문경환;조재일
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.1055-1066
    • /
    • 2018
  • 식생의 광학적 특성을 기반으로 만들어진 식생지수들은 식물의 생물생산량뿐만 아니라 생리적 활성을 나타내고 있다. 식생지수의 활용은 위성에 장착된 다중분광 광학 센서의 발달에 힘입은 바가 크지만, 관측 공간규모에 따라 식생지수의 민감도가 달라질 수 있어 여러 규모에서의 비교 관측이 요구된다. 특히 광화학반사지수(PRI, Photochemical Reflectance Index)는 광합성능과 식물 스트레스 탐지에 유용한 것으로 알려져 있지만 올바른 해석을 위한 다양한 공간규모에서의 선행연구가 드물다. 본 연구에서는 드론에 장착된 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계를 이용해 마늘 작물을 대상으로 서로 다른 공간규모의 PRI를 평가하였다. 잎 규모에서 하루 중 PRI는 잎의 윗면이 향하는 방위에 따라 서로 다른 시간에 최저값을 보였으며, 이는 어떤 순간에 잎마다 다른 광이용효율(LUE, Light Use Efficiency) 상태라는 것을 의미한다. 잎 규모에서는 식생피복율에 영향을 받지 않으므로 PRI 생물계절적 변화는 생육 초기에 개체 및 군락 규모보다 값이 높게 나타났다. 개체 및 군락 규모에서 PRI는 생물량을 나타내는 NDVI(Normalized Difference Vegetation Index)와는 달리 공간적 변동성이 크게 나타났다. 반면, 지상의 개체들 규모의 식생지수를 드론 영상의 관측 지점 값과 비교해 보면 NDVI에 비해 PRI가좀더 좋은 일치도를 보였다. 이러한 결과는 서로 다른 공간규모에서 관측된 PRI를 이해하고 활용하는데 도움이 될 것이다.

NOAA/AVHRR 자료를 이용한 순일차생산량 분포 추정 (Estimation of NPP Distribution using NOAA/AVHRR)

  • 신사철;유철상
    • 한국환경과학회지
    • /
    • 제6권6호
    • /
    • pp.605-612
    • /
    • 1997
  • This study is to evaluate the overall NPP(Net Primary Productions distribution in the Korean Peninsula from the satellite data(NOAA/AVHRR). This has been done using the linear relationship between the natural vegetation condition and the NPP. The NPP of natural vegetation increases proportional to the annual net radiation(Rn), where radiative dorless Index(RDI) is a proportional constant connecting Rn to NPP. Normalized Difference Vegetation Index(NDVI) Is used for monitoring vegetation change, and INDVI (Integrated NDVI) for annual analysis. The INDVI has a close relation to .Rn and NPP. which can be used effectively for estimating NPP distribution of where the meteorological data Is unavailable such as North Korea. The NPP distribution of the Korean Peninsula was estimated based on the model.

  • PDF

Pasture Vegetation Changes in Mongolia

  • Erdenetuya, M.
    • 한국제4기학회지
    • /
    • 제18권2호통권23호
    • /
    • pp.105-106
    • /
    • 2004
  • The NDVI(normalized difference vegetation index) dataset is unique or main tool to assess the global, multi seasonal, multi annual, and multi spectral changes over the World. These features are useful for environmental studies in particular, for the vegetation coverage monitoring of the country as Mongolia, where are large pastureland and pastoral animal husbandry, which dependent on natural conditions. Pasture vegetation cover is changing accordingly with both of global climate change and anthropogenic effect or human impacts. Using past 20 years (1982-2001) NDVI derived from NOAA satellite, its dynamical trend has been decreased in all natural zones differently. Also applied the method named "Two Years Differences" which could calculate the number of years with increased or decreased NDVI values at the same place. From May to September have occurred the 9 years maximum decreases of NDVI over Mongolia, but it obtained differently in spatial and temporal scale. In 24.4 ? 32.7% of all territory occurred one year decrease of NDVI and in 18% occurred more than 3 years frequent decrease of NDVI. According to the linear trend of NDVI and in 18% occurred more than 3 years frequent decrease of NDVI dynamics over 69% of whole territory of Mongolia NDVI values had been decreased due to both natural and human induced impacts to the pasture condition. In this paper also included some results of the integrated analyses of NOAA/NDVI and ground truth data over Monglia separately by natural zones.

  • PDF

농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가 (Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4)

  • 차성은;원명수;장근창;김경민;김원국;백승일;임중빈
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1273-1283
    • /
    • 2022
  • 최근 기후변화로 인해 중대형 산불이 빈번하게 발생하여 매년 인명 및 재산피해로 이어지고 있다. 원격탐사를 활용한 산불 피해지 모니터링 기법은 신속한 정보와 대규모 피해지의 객관적인 결과를 취득할 수 있다. 본 연구에서는 산불 피해지를 분류하기 위해 Sentinel-2의 분광대역, 정규식생지수(normalized difference vegetation index, NDVI), 정규수역지수(normalized difference water index, NDWI)를 활용하여 2022년 3월 발생한 강릉·동해 산불 피해지를 대상으로 U-net 기반 convolutional neural networks (CNNs) 딥러닝 모형을 모의하였다. 산불 피해지 분류 결과 강릉·동해 산불 피해지의 경우 97.3% (f1=0.486, IoU=0.946)로 분류 정확도가 높았으나, 과적합(overfitting)의 가능성을 배제하기 어려워 울진·삼척 지역으로 동일한 모형을 적용하였다. 그 결과, 국립산림과학원에서 보고한 산불 피해 면적과의 중첩도가 74.4%로 확인되어 모형의 불확도를 고려하더라도 높은 수준의 정확도를 확인하였다. 본 연구는 농림위성과 유사한 분광대역을 선택적으로 사용하였으며, Sentinel-2 영상을 활용한 산불 피해지 분류가 정량적으로 가능함을 시사한다.

Using Chlorophyll Fluorescence and Vegetation Indices to Predict the Timing of Nitrogen Demand in Pentas lanceolata

  • Wu, Chun-Wei;Lin, Kuan-Hung;Lee, Ming-Chih;Peng, Yung-Liang;Chou, Ting-Yi;Chang, Yu-Sen
    • 원예과학기술지
    • /
    • 제33권6호
    • /
    • pp.845-853
    • /
    • 2015
  • The objective of this study was to predict the timing of nitrogen (N) demand through analyzing chlorophyll fluorescence (ChlF), soil-plant analysis development (SPAD), and normalized difference vegetation index (NDVI), which are positively correlated with foliar N concentration in star cluster (Pentas lanceolata). The plants were grown in potting soil under optimal conditions for 30 d, followed by weekly irrigation with five concentrations (0, 4, 8, 16, and 24 mM) of N for an additional 30 d. These five N application levels corresponded to leaf N concentrations of 2.62, 3.48, 4.00, 4.23, and 4.69%, respectively. We measured 13 morphological and physiological parameters, as well as the responses of these parameters to various N-fertilizer treatments. The general increases in Dickson's quality index (DQI), above-ground dry weight (DW), total DW, flowering rate, ${\Delta}F/Fm$', and qP in response to treatment with 0 to 8 mM N were similar to those of SPAD, NDVI, and Fv/Fm. Consistent and strong correlations ($R^2$= 0.60 to 0.85) were observed between leaf N concentration (%) and SPAD, NDVI, ${\Delta}F/Fm$', and above-ground DW. Validation of leaf S PAD, NDVI, and ${\Delta}F/Fm$' revealed that these vegetation indices are accurate predictors of leaf N concentration that can be used for non-destructive estimation of the proper timing for N-solution irrigation of P. lanceolata. Moreover, irrigation with 8 mM N-fertilizer i s recommended w hen leaf N concentration, SPAD, NVDI, and ${\Delta}F/Fm$' ratios are reduced from their saturation values of 4.00, 50.68, 0.64, and 0.137%, respectively.

Comparative Analysis of the Multispectral Vegetation Indices and the Radar Vegetation Index

  • Kim, Yong-Hyun;Oh, Jae-Hong;Kim, Yong-Il
    • 한국측량학회지
    • /
    • 제32권6호
    • /
    • pp.607-615
    • /
    • 2014
  • RVI (Radar Vegetation Index) has shown some promise in the vegetation fields, but its relationship with MVI (Multispectral Vegetation Index) is not known in the context of various land covers. Presented herein is a comparative analysis of the MVI values derived from the LANDSAT-8 and RVI values originating from the RADARSAT-2 quad-polarimetric SAR (Synthetic Aperture Radar) data. Among the various multispectral vegetation indices, NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were used for comparison with RVI. Four land covers (urban, forest, water, and paddy field) were compared, and the patterns were investigated. The experiment results demonstrated that the RVI patterns of the four land covers are very similar to those of NDVI and SAVI. Thus, during bad weather conditions and at night, the RVI data could serve as an alternative to the MVI data in various application fields.

조화 분석을 이용한 식생지수 보정 기법에 관한 연구 (NDVI Noise Interpolation Using Harmonic Analysis)

  • 박수재;한경수;피경진
    • 대한원격탐사학회지
    • /
    • 제26권4호
    • /
    • pp.403-410
    • /
    • 2010
  • NDVI(Normalized Difference Vegetation Index)는 기후 변화 모니터링과 식생 변화 탐지 모니터링을 위한 주요한 지표이며 주로 단일 기간 합성 자료 형태로 널리 활용되고 있다. 원격탐사 된 식생지수 자료는 전처리 과정을 거치게 되지만 제거되지 못한 cloud pixel, 대기 효과, 지면의 상태 등으로 인하여 NDVI 값이 저평가(low peak)되는 noise가 발생하게 된다. 이러한 문제점을 해결하기 위해 국내 외 연구가 활발히 진행되고 있으며 최근 높은 값(high peak)을 추적하는 방법인 다중 다항 회귀식을 이용하여 noise를 보정하는 방법이 개발되었으나 부분적으로 참값보다 과대 평가되는 문제점이 있다. 따라서 본 연구에서는 과대 평가되는 문제점을 해결하고자 조화 분석을 이용하여 low peak 탐지 후 보간하는 종합적인 기법을 개발하였다. 이를 검증하기 위해 SPOT/VGT NDVI 10-day MVC 자료를 이용하여 다중 다항 회귀식을 이용한 방법과의 비교 분석을 수행한 결과 전반적인 식생 지수의 시계열 특성이 잘 나타났고 NDVI 실제 값(raw value)을 보다 현실적으로 재생산하여 조화 분석을 이용한 방법이 더 우수한 것으로 판단된다.

Relating Hyperspectral Image Bands and Vegetation Indices to Corn and Soybean Yield

  • Jang Gab-Sue;Sudduth Kenneth A.;Hong Suk-Young;Kitchen Newell R.;Palm Harlan L.
    • 대한원격탐사학회지
    • /
    • 제22권3호
    • /
    • pp.183-197
    • /
    • 2006
  • Combinations of visible and near-infrared (NIR) bands in an image are widely used for estimating vegetation vigor and productivity. Using this approach to understand within-field grain crop variability could allow pre-harvest estimates of yield, and might enable mapping of yield variations without use of a combine yield monitor. The objective of this study was to estimate within-field variations in crop yield using vegetation indices derived from hyperspectral images. Hyperspectral images were acquired using an aerial sensor on multiple dates during the 2003 and 2004 cropping seasons for corn and soybean fields in central Missouri. Vegetation indices, including intensity normalized red (NR), intensity normalized green (NG), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and soil-adjusted vegetation index (SAVI), were derived from the images using wavelengths from 440 nm to 850 nm, with bands selected using an iterative procedure. Accuracy of yield estimation models based on these vegetation indices was assessed by comparison with combine yield monitor data. In 2003, late-season NG provided the best estimation of both corn $(r^2\;=\;0.632)$ and soybean $(r^2\;=\;0.467)$ yields. Stepwise multiple linear regression using multiple hyperspectral bands was also used to estimate yield, and explained similar amounts of yield variation. Corn yield variability was better modeled than was soybean yield variability. Remote sensing was better able to estimate yields in the 2003 season when crop growth was limited by water availability, especially on drought-prone portions of the fields. In 2004, when timely rains during the growing season provided adequate moisture across entire fields and yield variability was less, remote sensing estimates of yield were much poorer $(r^2<0.3)$.

MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가 (Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images)

  • 박종화;나상일
    • 한국환경복원기술학회지
    • /
    • 제9권6호
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.