• Title/Summary/Keyword: Normalized Damage Isoclines

Search Result 4, Processing Time 0.028 seconds

Signal Processing for Multiaxial Vibration Fatigue Test on Vehicle Component (자동차 부품에 대한 다축 진동내구 시험용 신호처리 방법)

  • Bae, Chul-Yong;Kim, Chan-Jung;Lee, Dong-Won;Lee, Bong-Hyun;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.368-374
    • /
    • 2008
  • Multi-axial simulation table(MAST) is widely used in motor companies as the multi-axial excitor for vibration fatigue of target component, which provides the vibrational condition as close as the vehicle test. However, the vibration fatigue performance of target component can be guaranteed with MAST system only in case the input profile covers the required severity of the target component on field test. In this paper, the signal processing for multi-axial vibration fatigue test on vehicle component is presented, from the data acquisition of the target component to the derivation of input profile. To compare the severity of vibration condition between field and proving ground, the energy principle of a equivalent damage is proposed and then, it is determined the optimal combination of special events on proving ground using a sequential searching optimal algorithm. To explain the vibration methodology clearly, seat and door component of vehicle are selected as a example.

Multi-axial Vibration Testing Methodology of Vehicle Component (자동차 부품에 대한 다축 진동내구 시험방법)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Dong-Won;Kwon, Seong-Jin;Lee, Bong-Hyun;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.297-302
    • /
    • 2007
  • Vibrating test of vehicle component can be possible in lab-based simulators instead of field testing owing to the development of technology in control algorithm as well as computational process. Currently, Multi-Axial Simulation Table(MAST) is recommended as a vibrating equipment, which excites a target component for 3-directional translation and rotation motion simultaneously and hence, vibrational condition can be fully approximated to that of real road test. But, the vibration-free performance of target component is not guaranteed with MAST system, which is only simulator subjective to the operator. Rather, the reliability of multi-axial vibration test is dependent on the quality of input profile which should cover the required severity of vibrating condition on target component. In this paper, multi-axial vibration testing methodology of vehicle component is presented here, from data acquisition of vehicle accelerations to the obtaining the input profile of MAST using severe data at proving ground. To compare the severity of vibration condition, between real road test and proving ground one, energy principle of equivalent damage is proposed to calculate energy matrices of acceleration data and then, it is determined the optimal combination of special events on proving ground which is equivalent to real road test at the aspects of vibration fatigue using sequential searching optimal algorithm. To explain the vibration methodology clearly, seat and door component of vehicle are selected as a example.

  • PDF

Multi-axial Vibration Test on MAST System with Field Data (국내도로 주행 시험을 통한 6축 진동시험 방법에 관한 연구)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bang-Hyun;Kwon, Seong-Jin;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.704-711
    • /
    • 2006
  • Vibration test on MAST(multi axial simulation table) system has several advantage over one-axial vibration test that could simulate 6-DOF, 3-axial translation and 3-axial moment, at the same time. Since field vibration motion can be fully represented with 6-DOF, multi-axial vibration test on vehicle component is widely conducted in technical leading companies to make sure its fatigue performance in vibration environment. On the way to fulfill the process, editing technique of obtained field data is key issue to success a reliable vibration testing with MAST system. Since the original signals are not only too large to fulfill it directly, but all of the measured data is not guarantee its convergency on generating its driving files, editing technique of the original signals are highly required to make some events that should meet the equal fatigue damage on the target component In this paper, key technique on editing a field data feasible for MAST system is described based on energy method in vibration fatigue. To explain its technique explicitly, author first introduced a process on field data acquisition of two vehicle component and then, representing events are produced to keep up with the editing strategy about a energy method. In the final chapter, a time information regarding a vibration test on MAST system is derived from the energy data which is critical information to perform a vibration test.

MAST Vibration on MAST System with Field Data (국내도로 주행 시험을 통한 6축 진동시험 방법에 관한 연구)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun;Kwon, Seong-Jin;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.764-769
    • /
    • 2006
  • Vibration test on MAST(multi axial simulation table) system has several advantage over one-axial vibration test that could simulate 6-DOF, 3-axial translation and 3-axial moment, at the same time. Since field vibration motion can be fully represented with 6-DOF, multi-axial vibration test on vehicle component is widely conducted in technical leading companies to make sure its fatigue performance in vibration environment. On the way to fulfill the process, editing technique of obtained field data is key issue to success a reliable vibration testing with MAST system. Since the original signals are not only too large to fulfill it directly, but all of the measured data is not guarantee its convergency on generating its driving files, editing technique of the original signals are highly required to make some events that should meet the equal fatigue damage on the target component In this paper, key technique on editing a field data feasible for MAST system is described based on energy method in vibration fatigue. To explain its technique explicitly, author first introduced a process on field data acquisition of two vehicle component and then, representing events are produced to keep up with the editing strategy about a energy method. In the final chapter, a time information regarding a vibration test on MAST system is derived from the energy data which is critical information to perform a vibration test.

  • PDF